Skip to main content
Log in

The Non-Adiabatic Polaron Model Revisited

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We revisit Holstein’s polaron model to derive an extension of the expression for the thermal dependence of the electrical resistivity in the non-adiabatic small-polaron regime. Our analysis relaxes Holstein’s assumption that the vibrational-mode energies \(\hbar \omega _{k}\) are much smaller than the thermal energy k B T and substitutes a fifth-order expansion in powers of \(\hbar \omega _{k}/k_{B}T\) for the linear approximation in the expression for the quasiparticle hopping probability in the original treatment. The resulting expression for the electrical resistivity has the form ρ(T)=ρ 0 T 3/2 exp(E a /k B TC/T 3+D/T 5), where C and D are constants related to the molecule–electron interaction energy, or alternatively to the polaron binding energy, and the dispersion relation of the vibrational normal modes. We show that experimental data for the La 1−x Ca x MnO 3 (x=0.30,0.34,0.40, and 0.45) manganite system, which are poorly fitted by the conventional non-adiabatic model, are remarkably well described by the more accurate expression. Our results suggest that, under conditions favoring high resistivity, the higher-order terms associated with the constants C and D in the above expression should taken into account in comparisons between theoretical and experimental results for the temperature-dependent transport properties of transition-metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For better visualization, the supporting information shows plots of log(ρ/T)s as a function of 1/T

References

  1. C. Kittel. Introduction to solid states physics, 8th (Berkeley, California, 2005)

    Google Scholar 

  2. N. W. Ashcroft, N.D Mermin. Solid state physics (Orlando, Florida, 1976)

    Google Scholar 

  3. D. K. Ferry. Semiconductor transport, Taylor and Francis,1st ed. (London, 2000)

  4. B. Askerov, Electron transport phenomena in semiconductors. Singapore: World Scientific, 1st ed. (1994)

  5. N. F. Mott, E. A. Davies. Electron processes in non-crystalline materials (Clarendon, Oxford, 1979)

    Google Scholar 

  6. K. Tobe, T. Kimura, Y. Okimoto, Y. Tokura. Phys. Rev. B. 64, 184421 (2001)

    Article  ADS  Google Scholar 

  7. H. L. Liu, M. A. Quijada, A. M. Zibold, Y.-D. Yoon, D. B. Tanner, G. Cao, J. E. Crow, H. Berger, G. Margaritondo, L. Forr, B. Hoan, J. T. Markert, R. J. Kelly, M. Onellion. J. Phys: Condens. Matter. 11, 239 (1999)

    ADS  Google Scholar 

  8. A. S. Moskvin, Phys. Rev. B. 84, 075116 (2011)

    Article  ADS  Google Scholar 

  9. E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  10. T. Holstein. Ann. Phys. 8, 325 (1959)

    Article  ADS  MATH  Google Scholar 

  11. T. Holstein. Ann. Phys. 8, 343 (1959)

    Article  ADS  Google Scholar 

  12. R. Raffaelle, H. U. Anderson, D. M. Sparlin, P. E. Parris. Phys. Rev. B. 43, 7991 (1991)

    Article  ADS  Google Scholar 

  13. M. Jaime, H. T. Hardner, M. B. Salamon, M. Rubinstein, P. Dorsey, D. Emin. Phys. Rev. Lett. 78, 951 (1997)

    Article  ADS  Google Scholar 

  14. J. H. Zhao, H. P. Kundel, X. Z. Zhou, Gwyn Williams. J. Phys: Condens. Matter. 13, 5785 (2001)

    ADS  Google Scholar 

  15. M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz, D. B. Chrisey. Phys. Rev. B. 54, 11914 (1996)

    Article  ADS  Google Scholar 

  16. P. Mandal, B. Bandyopadhyay, B. Ghosh. Phys. Rev. B. 64, 180405R (2001)

    Article  ADS  Google Scholar 

  17. T. Chatterji, D. Riley, F. Fauth, P. Mandal, B. Ghosh. Phys. Rev. B. 73, 094444 (2006)

    Article  ADS  Google Scholar 

  18. S.-W. Cheong, H. Y. Hwang, ed. by Y. Tokura. In colossal magnetoresistance oxides (Gordeon &a m p; Breach, London, 1999)

  19. G. Huo, D. Song, Q. Yang, F. Dong. Ceram. Int. 34, 497 (2008)

    Article  Google Scholar 

  20. A. Karmakar, S. Majumdar, S. Giri. Phys. Rev. B. 79, 094406 (2009)

    Article  ADS  Google Scholar 

  21. A. Neetikam, I. Das, A. K. Dhiman, A. K. Nigam, D. Yadav, Bhattacharyya, S. S. Meena. J. Appl. Phys. 112, 123913 (2012)

    Article  ADS  Google Scholar 

  22. X. J. Chen, C. L. Zhang, J. S. Gardner, J. L. Sarrao, C. C. Almasan. Phys. Rev. B. 68, 064405 (2003)

    Article  ADS  Google Scholar 

  23. Yu. Kh. Vekilov, Ya. M. Mukovskii. Solid State C. 152, 1139 (2012)

    Article  ADS  Google Scholar 

  24. M. Viret, L. Ranno, J. M. D. Coey. J. Appl. Phys. 81, 4964 (1997)

    Article  ADS  Google Scholar 

  25. F. E. N. Ramirez, F. F. Ferreira, W. A. Alves, J. F. Q. Rey, J. A. Souza. J. Magn. Magn. Mater. 324 (2012)

  26. J. A. Souza, H. Terashita, E. Granado, R. F. Jardim, N. F. Jr. Oliveira, R. Muccillo. Phys. Rev. B. 78, 054411 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Brazilian agencies CNPq Grants No. 485405/2011-3 and 305772/2011-2 and FAPESP under Grants No. 2009/18618-5 and 2010/18364-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N. Ramirez, F.E., Souza, J.A. The Non-Adiabatic Polaron Model Revisited. Braz J Phys 44, 308–314 (2014). https://doi.org/10.1007/s13538-014-0208-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0208-8

Keywords

Navigation