Skip to main content

Advertisement

Log in

Radiation, Velocity and Thermal Slips Effect Toward MHD Boundary Layer Flow Through Heat and Mass Transport of Williamson Nanofluid with Porous Medium

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The thermal radiation impact of MHD boundary layer flow of Williamson nanofluid along a stretching surface with porous medium taken into account of velocity and thermal slips is discussed numerically. This model aims to examine the phenomena of heat and mass transport caused by thermophoresis and Brownian motion. Through the help of similarity transformations, the governing system of PDEs is converted to a set of nonlinear ODE’s. Here, ordinary differential equations provide the mathematical formulation. The coupled system obtained has been analyzed using the Keller-Box technique; Newton's system dictates that the coefficients must be accurate and refined. To get a full understanding of the present situation, the effect of the flow regulating factors on relevant profiles is quantified and qualitatively assessed. The wall friction factor, heat, and mass transport coefficients are calculated graphically and tabulated. The findings reveal that when the slip and heat factor parameters improve, the boundary layer's thickness drops. Furthermore, the present findings indicate that raising the Williamson parameter enhances the concentration and temperature of the nanofluid. The validity of the outcomes is further shown by comparison to previously published data, which demonstrate good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(\lambda = \sqrt {\frac{{2b^{3} }}{\nu }} \Gamma x\) :

Denotes the Williamson parameter

\(\Pr = \frac{\nu }{\alpha }\) :

Represents Prandtl number

\({\text{Nc}} = \frac{{\rho_{p} c_{p} }}{\rho c}\left( {C_{w} - C_{\infty } } \right)\) :

Denotes the heat capacities ratio parameter

\({\text{Nbt}} = \frac{{T_{\infty } D_{{\text{B}}} \left( {C_{w} - C_{\infty } } \right)}}{{D_{{\text{T}}} \left( {T_{w} - T_{\infty } } \right)}}\) :

Represents diffusivity ratio parameter

\({\text{Le}} = \frac{\alpha }{{D_{{\text{B}}} }}\) :

Denotes Lewis number

\({\text{Sc}} = \frac{\nu }{{D_{{\text{B}}} }}\) :

Is Schmidt number

\(M = \frac{{\sigma B_{0}^{2} }}{\rho b}\) :

Is magnetic field

\(Kp = \frac{\nu }{k^{\prime}b}\) :

Is the permeability parameter

\(R = \frac{{4\sigma^{*} T_{\infty }^{3} }}{{kk^{*} }}\) :

Indicates the radiation parameter

\(a,b\) :

Stretching rate constants

\(B^{*}\) :

Thermal slip factor

\(C\) :

Volume fraction of the nanoparticle

\(T\) :

Temperature of the fluid (K)

\(C_{p}\) :

Specific heat capacity of nanoparticle

\(C_{\infty }\) :

Ambient nanoparticle volume fraction (mol m−3)

\(D_{{\text{B}}}\) :

Brownian diffusion coefficient

\(D_{{\text{T}}}\) :

Thermophoresis diffusion coefficient

\(f\) :

Stream function in dimensionless form

\({\text{Re}}\) :

Reynolds number

\({\text{Sh}}\) :

Sherwood number

\(T_{w}\) :

Fluid temperature near sheet (K)

\(u\) :

Component of velocity along x-axis (m s−1)

\(v\) :

Component of velocity along y-axis (m s−1)

\(\alpha\) :

Thermal diffusivity of the nanofluid (m s−1)

\(\theta\) :

Temperature in dimensionless form (K)

\(C_{w}\) :

Nanoparticle volume fraction at the sheet (mol m−3)

\(\phi\) :

Nanoparticle volume fraction in dimensionless form (mol m−3)

\({\Gamma }\) :

Time constant

\(\delta\) :

Parameter of the velocity slip

\(\nu\) :

Kinematic viscosity (m2 s−1)

\(\mu\) :

Dynamic viscosity

\(\rho_{p}\) :

Nanoparticles density (kg/m3)

\(T_{\infty }\) :

Ambient fluid temperature (K)

\(\rho\) :

Nanofluid density (kg/m3)

\(\left( {\rho c} \right)_{f}\) :

Fluid heat capacity

\(\left( {\rho c} \right)_{p}\) :

Effective heat capacity of the nanoparticle

\(k^{\prime}\) :

Permeability of the porous medium

\(B_{0}\) :

Induced magnetic field (Tesla)

\(A^{*}\) :

Velocity slip factor

\(x,y -\) :

Coordinate axes (m)

\({\text{Nu}}\) :

Nusselt number

\(\sigma\) :

Electrical conductivity \((\Omega^{ - 1} \,{\text{m}}^{ - 1} )\)

\(\beta\) :

Thermal slip parameter

\(U_{w}\) :

Velocity along x-axis (m s−1)

References

  1. Nayak, M.K.: MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation. Int. J. Mech. Sci. 124–125, 185–193 (2017)

    Article  Google Scholar 

  2. Marzougui, S.; Bouabid, M.; Mebarek-Oudina, F.; Abu-Hamdeh, N.; Magherbi, M.; Ramesh, K.: A computational analysis of heat transport irreversibility phenomenon in a magnetized porous channel. Int. J. Numer. Methods Heat Fluid Flow 31(7), 2197–2222 (2021). https://doi.org/10.1108/HFF-07-2020-0418

    Article  Google Scholar 

  3. Metri, P.G.; Metri, P.G.; Abel, S.; Silvestrov, S.: Heat transfer in MHD mixed convection viscoelastic fluid flow over a stretching sheet embedded in a porous medium with viscous dissipation and non-uniform heat source/sink. Procedia Eng. 157, 309–316 (2016)

    Article  MATH  Google Scholar 

  4. Akbar, N.; Beg, O.A.; Khan, Z.H.: Magneto-nanofluid flow with heat transfer past a stretching surface for the new heat flux model using numerical approach. Int. J. Numer. Methods Heat Fluid Flow 27(6), 1215–1230 (2017). https://doi.org/10.1108/HFF-03-2016-0125

    Article  Google Scholar 

  5. Rashidi, M.M.; Rostami, B.; Freidoonimehr, N.; Abbasbandy, S.: Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng. J. 5, 901–912 (2014)

    Article  Google Scholar 

  6. Rashidi, M.M.; Erfani, E.: Analytical method for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating. Eng. Comput. 29, 562–579 (2012)

    Article  Google Scholar 

  7. Khedr, M.E.M.; Chamkha, A.J.; Bayomi, M.: MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption. Nonlinear Anal. Model. Control 14, 27–40 (2009)

    Article  MATH  Google Scholar 

  8. Fang, T.; Zhang, J.: Closed-form exact solutions of MHD viscous flow over a shrinking sheet. Commun. Nonlinear Sci. Numer. Simul. 14, 2853–2857 (2009)

    Article  MATH  Google Scholar 

  9. Magyari, E.; Chamkha, A.J.: Exact analytical results for the thermosolutal MHD Marangoni boundary layers. Int. J. Therm. Sci. 47, 848–857 (2008)

    Article  Google Scholar 

  10. Ishak, A.; Nazar, R.; Pop, I.: MHD boundary-layer flow due to a moving extensible surface. J. Eng. Math. 62, 23–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yasin, M.H.M.; Ishak, A.; Pop, I.: MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect. J. Magn. Magn. Mater. 407, 235–240 (2016). https://doi.org/10.1016/j.jmmm.2016.01.087

    Article  Google Scholar 

  12. Falodun, B.O.; Omowaye, A.J.: Double-diffusive MHD convective flow of heat and mass transfer over a stretching sheet embedded in a thermally-stratified porous medium. World J. Eng. 16(6), 712–724 (2019). https://doi.org/10.1108/WJE-09-2018-0306

    Article  Google Scholar 

  13. Madhusudan, S.; Sampad Kumar, P.; Swain, K.; Ibrahim, S.M.: Analysis of variable magnetic field on chemically dissipative MHD boundary layer flow of Casson fluid over a nonlinearly stretching sheet with slip conditions. Int. J. Ambient Energy (2020). https://doi.org/10.1080/01430750.2020.1831601

    Article  Google Scholar 

  14. Choi, S. U. S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, pp. 99–105 (1995)

  15. Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J.: nomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  Google Scholar 

  16. Kuznetsov, A.V.; Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  17. Anwar, M.I.; Khan, I.; Hussanan, A.; Salleh, M.Z.; Sharidan, S.: Stagnation-point flow of a nanofluid over a nonlinear stretching sheet. World Appl. Sci. J. 23, 998 (2013)

    Google Scholar 

  18. Azimi, M.; Riazi, R.: Heat transfer of GO-water nanofluid flow between two parallel disks. Propuls. Power Res. 4, 23–50 (2015)

    Article  Google Scholar 

  19. Bhargava, R.; Goyal, M.; Pratibha: An efficient hybrid approach for simulating MHD nanofluid flow over a permeable stretching sheet. Springer Proc. Math. Stat. 143, 701–714 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Raza, J.; Mebarek-Oudina, F.; Mahanthesh, B.: Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips. Multidiscip. Model. Mater. Struct. 15(5), 871–894 (2019). https://doi.org/10.1108/MMMS-11-2018-0183

    Article  Google Scholar 

  21. Khan, U.; Zaib, A.; Mebarek-Oudina, F.: Mixed convective magneto flow of SiO2-MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: Stability analysis. Arab. J. Sci. Eng. 45(11), 9061–9073 (2020). https://doi.org/10.1007/s13369-020-04680-7

    Article  Google Scholar 

  22. Chamkka, A.J.; Aly, A.M.; Al-Mudhaf, H.: Laminar MHD mixed convection flow of a nanofluid along a stretching permeable surface in the presence of heat generation or absorption effects. Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom. 2, 51–70 (2011)

    Google Scholar 

  23. Turkyilmazoglu, M.: Exact analytical solutions for heat and mass transfer of MHD slip flowin nanofluids. Chem. Eng. Sci. 84, 182–187 (2012)

    Article  Google Scholar 

  24. Wubshet, I.; Shankar, B.: MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput. Fluids 75, 1–10 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nagendra, N.; Amanulla, C.H.; Sudhakar Reddy, M.; Ramachandra, P.V.: Hydromagnetic flow of heat and mass transfer in a nano Williamson fluid past a vertical plate with thermal and momentum slip effects: numerical study. Nonlinear Eng. 8, 127–144 (2019)

    Article  Google Scholar 

  26. Garoosi, F.; Jahanshaloo, L.; Rashidi, M.M.; Badakhsh, A.; Ali, M.E.: Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model. Appl. Math. Comput. 254, 183–203 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Konda, J.R.; Madhusudhana Reddy, N.P.; Konijeti, R.; Dasore, A.: Effect of non-uniform heat source/sink on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Multidiscip. Model. Mater. Struct. 15, 452–472 (2019). https://doi.org/10.1108/MMMS-01-2018-0011

    Article  Google Scholar 

  28. Yahaya, S.D.; Zainal, A.A.; Zuhaila, I.; Faisal, S.: Hydromagnetic slip flow of nanofluid with thermal stratification and convective heating. Aust. J. Mech. Eng. 18(2), 147–155 (2020). https://doi.org/10.1080/14484846.2018.1432330

    Article  Google Scholar 

  29. Acharya, N.; Das, K.; Kundu, P.K.: Influence of multiple slips and chemical reaction on radiative MHD Williamson nanofluid flow in porous medium: a computational framework. Multidiscip. Model. Mater. Struct. 15(3), 630–658 (2019). https://doi.org/10.1108/MMMS-08-2018-0152

    Article  Google Scholar 

  30. Mishra, S.R.; Mathur, P.: Williamson nanofluid flow through porous medium in the presence of melting heat transfer boundary condition: semi-analytical approach. Multidiscip. Model. Mater. Struct. 17(1), 19–33 (2021). https://doi.org/10.1108/MMMS-12-2019-0225

    Article  Google Scholar 

  31. Asogwa, K.; Mebarek-Oudina, F.; Animasaun, I.: Comparative investigation of water-based Al2O3 nanoparticles through water-based CuO nanoparticles over an exponentially accelerated radiative riga plate surface via heat transport. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-06355-3

    Article  Google Scholar 

  32. Warke, A.S.; Ramesh, K.; Mebarek-Oudina, F.; Abidi, A.: Numerical investigation of nonlinear radiation with magnetomicropolar stagnation point flow past a heated stretching sheet. J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-021-10976-z

    Article  Google Scholar 

  33. Mahanthesh, B.; Gireesha, B.J.; Animasaun, I.L.: Exploration of non-linear thermal radiation and suspended nanoparticles effects on mixed convection boundary layer flow of nanoliquids on a melting vertical surface. J. Nanofluids 7(5), 833–843 (2018)

    Article  Google Scholar 

  34. Mabood, F.; Ibrahim, S.M.; Lorenzini, G.; Lorenzini, E.: Radiation effects on Williamson nanofluid flow over a heated surface with magnetohydrodynamics. Int. J. Heat Technol. 35(1), 196–204 (2017)

    Article  Google Scholar 

  35. Bhatti, M.M.; Rashidi, M.M.: Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J. Mol. Liq. 221, 567–573 (2016)

    Article  Google Scholar 

  36. Krishnamurthy, M.R.; Gireesha, B.J.; Prasannakumara, B.C.; Gorla, R.S.R.: Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. Nonlinear Eng. 5(3), 147–159 (2016)

    Article  Google Scholar 

  37. Pal, D.; Roy, N.; Vajravelu, K.: Thermophoresis and Brownian motion effects on magneto-convective heat transfer of viscoelastic nanofluid over a stretching sheet with nonlinear thermal radiation. Int. J. Ambient Energy (2019). https://doi.org/10.1080/01430750.2019.1636864

    Article  Google Scholar 

  38. Ghadikolaei, S.S.; Hosseinzadeh, K.; Ganji, D.D.: Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with non-linear thermal radiation and Joule heating effect. World J. Eng. 16(1), 51–63 (2019). https://doi.org/10.1108/WJE-06-2018-0204

    Article  Google Scholar 

  39. Almakki, M.; Mondal, H.; Sibanda, P.: Entropy generation in magneto nanofluid flow with Joule heating and thermal radiation. World J. Eng. 17(1), 1–11 (2020). https://doi.org/10.1108/WJE-06-2019-0166

    Article  Google Scholar 

  40. Gao, T.; Li, C.; Yang, M.; Zhang, Y.; Jia, D.; Ding, W.; Debnath, S.; Yu, T.; Said, Z.; Wang, J.: Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. J. Mater. Process. Technol. 290, 116976 (2021). https://doi.org/10.1016/j.jmatprotec.2020.116976

    Article  Google Scholar 

  41. Pushpa, B.V.; Sankar, M.; Mebarek-Oudina, F.: Buoyant convective flow and heat dissipation of Cu–H2O nanoliquids in an annulus through a thin baffle. J. Nanofluids 10(2), 292–304 (2021). https://doi.org/10.1166/jon.2021.1782

    Article  Google Scholar 

  42. Wang, X.; Li, C.; Zhang, Y.; Said, Z.; Debnath, S.; Sharma, S.; Yang, M.; Gao, T.: Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. Int. J. Adv. Manuf. Technol. 119, 631–646 (2022). https://doi.org/10.1007/s00170-021-08235-4

    Article  Google Scholar 

  43. Dadheech, P.K.; Agrawal, P.; Mebarek-Oudina, F.; Abu-Hamdeh, N.; Sharma, A.: Comparative heat transfer analysis of MoS2/C2H6O2 and MoS2–SiO2/C2H6O2 nanofluids with natural convection and inclined magnetic field. J. Nanofluids 9(3), 161–167 (2020). https://doi.org/10.1166/jon.2020.1741

    Article  Google Scholar 

  44. Chabani, I.; Mebarek-Oudina, F.; Ismail, A. I.: MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle. Micromachines 13(2), 224 (2022). https://doi.org/10.3390/mi13020224

    Article  Google Scholar 

  45. Djebali, R.; Mebarek-Oudina, F.; Choudhari, R.: Similarity solution analysis of dynamic and thermal boundary layers: further formulation along a vertical flat plate. Phys. Scr. 96(8), 085206 (2021). https://doi.org/10.1088/1402-4896/abfe31

    Article  Google Scholar 

  46. Marzougui, S.; Mebarek-Oudina, F.; Mchirgui, A.; Magherbi, M.: Entropy generation and heat transport of Cu-water nanoliquid in porous lid-driven cavity through magnetic field. Int. J. Numer. Methods Heat Fluid Flow (2021). https://doi.org/10.1108/HFF-04-2021-0288

    Article  Google Scholar 

  47. Hayat, T.; Abbas, Z.; Javed, T.: Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet. Phys. Lett. A 372(5), 637–647 (2008)

    Article  MATH  Google Scholar 

  48. KhoYap, B.; Abid, H.; Muhammad Khairul, A.M.; Mohd Zuki, S.: Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips: Buongiorno model. Propuls. Power Res. 8(3), 243–252 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work through Grant Code: (22UQU4240002DSR05).

Author information

Authors and Affiliations

Authors

Contributions

All authors have the same contribution.

Corresponding author

Correspondence to Fateh Mebarek-Oudina.

Appendix

Appendix

After using the similarity transformations

$$\begin{aligned} & u = bxf^{\prime}\left( \eta \right),\quad v = - \left( {b\nu } \right)^{\frac{1}{2}} f\left( \eta \right),\quad \eta = \sqrt {\frac{b}{\nu }} y \\ & \theta \left( \eta \right) = \frac{{T - T_{\infty } }}{{T_{w} - T_{\infty } }},\quad \phi \left( \eta \right) = \frac{{C - C_{\infty } }}{{C_{w} - C_{\infty } }} \\ \end{aligned}$$

The following Partial differential Eqs. (1)–(4) are transformed into Ordinary differential equations:

First we need to find the following differentials of \(\eta , u,v,T\;{\text{and}}\;C\) with respect to \(x \& y.\)

$$\begin{aligned} & \frac{\partial \eta }{{\partial x}} = 0,\quad \frac{\partial \eta }{{\partial y}} = \sqrt {\frac{b}{\nu }} , \\ & \quad \frac{\partial u}{{\partial x}} = bf^{\prime}\left( \eta \right),\quad \frac{\partial u}{{\partial y}} = bxf^{\prime\prime}\left( \eta \right)\sqrt {\frac{b}{\nu }} \\ & \frac{\partial v}{{\partial x}} = 0, \quad \frac{\partial v}{{\partial y}} = - bf^{\prime}\left( \eta \right),\quad \frac{{\partial^{2} u}}{{\partial y^{2} }} = \frac{{xb^{2} }}{\nu }f^{\prime\prime\prime}\left( \eta \right), \\ & \quad \frac{\partial T}{{\partial x}} = 2ax\theta^{\prime}\left( \eta \right), \quad \frac{\partial T}{{\partial y}} = \sqrt {\frac{b}{\nu }} ax^{2} \theta ^{\prime}\left( \eta \right) \\ & \frac{{\partial^{2} T}}{{\partial y^{2} }} = \frac{b}{\nu }ax^{2} \theta^{\prime\prime}\left( \eta \right),\quad \frac{\partial C}{{\partial x}} = 2ax\phi \left( \eta \right) , \\ & \quad \frac{\partial C}{{\partial y}} = \sqrt {\frac{b}{\nu }} ax^{2} \phi^{^{\prime}\left( \eta \right)} ,\quad \frac{{\partial^{2} C}}{{\partial y^{2} }} = \frac{b}{\nu }ax^{2} \phi^{\prime\prime}\left( \eta \right) \\ \end{aligned}$$

Then Eq. (1) itself satisfies

$$\frac{\partial u }{{\partial x}} + \frac{\partial v }{{\partial y}} = bf^{\prime}\left( \eta \right) + ( - bf^{\prime}\left( \eta \right) = 0$$

Equation (2) \(u\frac{\partial u}{{\partial x}} + v\frac{\partial u}{{\partial y}} = \nu \frac{{\partial^{2} u}}{{\partial y^{2} }} + \sqrt 2 \nu {\Gamma }\frac{\partial u}{{\partial y}}\frac{{\partial^{2} u}}{{\partial y^{2} }} - \frac{{\sigma B^{2}_{0} }}{\rho }u - \frac{v}{{k^{\prime}}}u\) transformed to the following form.

$$\begin{aligned} & \Rightarrow bxf^{\prime}\left( \eta \right).bf^{\prime}\left( \eta \right) + \left[ { - \left( {b\nu }\right)^{\frac{1}{2}} f\left( \eta \right)} \right].\left[ {bx\sqrt {\frac{b}{\nu }} f^{\prime\prime}\left( \eta \right)} \right]\\&\quad = \nu \left[ {\frac{{b^{2} x}}{\nu }f^{\prime\prime\prime}\left( \eta \right)} \right ] \\ & \qquad +\sqrt 2 \nu {\Gamma} {bx\sqrt {\frac{b}{\nu }} }f^{\prime\prime}( \eta ) {\frac{{b^{2} x}}{\nu }}f^{\prime\prime\prime}\left( \eta \right) - \frac{{\sigma B_{0}^{2} }}{\rho }bxf^{\prime}\left( \eta \right)\\ &\qquad -\frac{\nu }{{k^{\prime}}}bxf^{\prime}\left( \eta \right) \\ &\Rightarrow b^{2} xf^{{\prime}{2}} \left( \eta \right) - b^{2}xf\left( \eta \right)f^{\prime\prime}\left( \eta \right) = b^{2}xf^{\prime\prime\prime}\left( \eta \right) \\ & \quad + \sqrt {\frac{{2b^{3} }}{\nu }} b^{2} x{\Gamma }f^{^{\prime\prime}} \left(\eta \right)f^{\prime\prime\prime}\left( \eta \right) - \frac{{b^{2}x\sigma B_{0}^{2} }}{\rho b}f^{\prime}\left( \eta \right) -\frac{{\nu b^{2} x}}{{k^{\prime}b}}f^{\prime}\left( \eta \right) \\& \Rightarrow f^{{\prime}{2}} \left( \eta \right) - f\left( \eta \right)f^{\prime\prime}\left( \eta \right) =f^{\prime\prime\prime}\left( \eta \right) + \sqrt {\frac{{2b^{3}}}{\nu }} {\Gamma }f^{\prime\prime}\left( \eta \right)f^{\prime\prime\prime}\left( \eta \right)\\ &\quad -\frac{{\sigma B_{0}^{2} }}{\rho b}f^{\prime}\left( \eta \right) -\frac{\nu }{{k^{\prime}b}}f^{\prime}\left( \eta \right) \\ &\Rightarrow \user2{f^{\prime\prime\prime}}\left( {\varvec{\eta}}\right) + \user2{\lambda f^{\prime\prime}}\left( {\varvec{\eta}}\right)\user2{f^{\prime\prime\prime}}\left( {\varvec{\eta}} \right)\\ &\quad - \user2{f^{\prime}}^{2} \left( {\varvec{\eta}} \right) +{\varvec{f}}\left( {\varvec{\eta}}\right)\user2{f^{\prime\prime}}\left( {\varvec{\eta}} \right) -\user2{Mf^{\prime}}\left( {\varvec{\eta}} \right) -\user2{Kpf^{\prime}}\left( {\varvec{\eta}} \right) = 0 \\\end{aligned}$$

The Energy Eq. (3)

\(u\frac{\partial T}{{\partial x}} + v\frac{\partial T}{{\partial y}} = \alpha \frac{{\partial^{2} T}}{{\partial y^{2} }} + \frac{{\left( {\rho c} \right)_{p} }}{{\left( {\rho c} \right)_{f} }}\left[ {D_{{\text{B}}} \frac{\partial C}{{\partial y}}\frac{\partial T}{{\partial y}} + \frac{{D_{T} }}{{D_{\infty } }}\left( {\frac{\partial T}{{\partial y}}} \right)^{2} } \right] + \frac{{16\sigma^{*} T_{\infty }^{3} }}{{3k^{*} \left( {\rho c} \right)_{f} }}\frac{{\partial^{2} T}}{{\partial y^{2} }}\) is transformed to the following form:

$$\begin{aligned} & \Rightarrow bxf^{\prime}\left( \eta \right). 2ax\theta^{\prime}\left( \eta \right) + \left[ { - \left( {b\nu } \right)^{\frac{1}{2}} f\left( \eta \right)} \right].\left[ {ax^{2} \sqrt {\frac{b}{\nu }} \theta^{^{\prime}\left( \eta \right)} } \right]\\ & \quad = \alpha \left[ {\frac{{abx^{2} }}{\nu }\theta^{^{\prime\prime}\left( \eta \right)} } \right] \\ & \qquad + \frac{{\left( {\rho C} \right)_{p} }}{{\left( {\rho C} \right)_{f} }}\left[ {D_{{\text{B}}} ax^{2} \sqrt {\frac{b}{\nu }} \theta^{\prime}\left( \eta \right).ax^{2} \sqrt {\frac{b}{\nu }} \phi^{\prime}\left( \eta \right) + \frac{{D_{{\text{T}}} }}{{T_{\infty } }}\left( {ax^{2} \sqrt {\frac{b}{\nu }} \theta^{\prime}\left( \eta \right)} \right)^{2} } \right]\\ & \qquad + \frac{{16\sigma^{*} T_{\infty }^{3} }}{{\left( {\rho C} \right)_{f} 3k^{*} \nu }}ax^{2} b \theta ^{\prime\prime}\left( \eta \right). \\ & \Rightarrow 2abx^{2} f^{\prime}\theta^{\prime} - abx^{2} f\theta^{\prime} = \alpha \frac{{abx^{2} }}{\nu }\theta^{\prime\prime} + \frac{{\left( {\rho C} \right)_{p} }}{{\left( {\rho C} \right)_{f} }}D_{{\text{B}}} a^{2} x^{4} \frac{b}{\nu }\theta^{\prime}\phi^{\prime} \\ & \qquad + \frac{{\left( {\rho C} \right)_{p} }}{{\left( {\rho C} \right)_{f} }}a^{2} x^{4} \frac{b}{\nu }\frac{{D_{{\text{T}}} }}{{T_{\infty } }}\theta^{{^{{\prime}{2}} }} + \frac{{16\sigma^{*} T_{\infty }^{3} }}{{\left( {\rho C} \right)_{f} 3k^{*} \nu }}ax^{2} b \theta ^{\prime\prime} \\ & \Rightarrow 2f^{\prime}\theta - f\theta^{\prime} = \frac{\alpha }{\nu }\theta^{\prime\prime} + \frac{{\left( {\rho C} \right)_{p} }}{{\left( {\rho C} \right)_{f} }}D_{{\text{B}}} \frac{{ax^{2} }}{\nu }\theta^{\prime}\phi^{\prime} \\ &\qquad + \frac{{\left( {\rho C} \right)_{p} }}{{\left( {\rho C} \right)_{f} }}\frac{{ax^{2} }}{\nu }\frac{{D_{{\text{T}}} }}{{T_{\infty } }}\theta^{{^{{\prime}{2}} }} + \frac{{16\sigma^{*} T_{\infty }^{3} }}{{\left( {\rho C} \right)_{f} 3k^{*} \nu }} \theta ^{\prime\prime} \\ & \Rightarrow 2f^{\prime}\theta - f\theta^{\prime} = \frac{1}{\Pr }\theta^{\prime\prime} + \frac{{{\text{Nc}}}}{{{\text{Le}}.\Pr }}\theta^{\prime}\phi^{\prime} + \frac{{{\text{Nc}}}}{{\Pr .{\text{Le}}.{\text{Nbt}}}}\theta^{{^{{\prime}{2}} }} + \frac{4}{3\Pr }R \theta ^{\prime\prime} \\ & \Rightarrow 2f^{\prime}\theta - f\theta^{\prime} = \frac{1}{\Pr }\theta^{\prime\prime} + \frac{4}{3\Pr }R \theta ^{\prime\prime} + \frac{{{\text{Nc}}}}{{\Pr .{\text{Le}}}}\theta^{\prime}\phi^{\prime} + \frac{{{\text{Nc}}}}{{\Pr .{\text{Le}}.{\text{Nbt}}}}\theta^{{^{{\prime}{2}} }} \\ & \Rightarrow 2f^{\prime}\theta - f\theta^{\prime} = \frac{1}{\Pr }\left( {1 + \frac{4}{3}R} \right) \theta ^{\prime\prime} + \frac{{{\text{Nc}}}}{{\Pr .{\text{Le}}}}\theta^{\prime}\phi^{\prime} + \frac{{{\text{Nc}}}}{{\Pr .{\text{Le}}.{\text{Nbt}}}}\theta^{{^{{\prime}{2}} }} \\ & \Rightarrow \left( {\frac{{3 + 4{\varvec{R}}}}{3}} \right)\user2{\theta^{\prime\prime}} + {\varvec{Pr}}.\user2{f\theta^{\prime}} - 2{\varvec{Pr}}.\user2{f^{\prime}\theta } + \left( {\frac{{{\varvec{Nc}}}}{{{\varvec{Le}}}}} \right)\user2{\theta^{\prime}}\phi^{\prime}\\ &\qquad + \frac{{{\varvec{Nc}}}}{{\left( {{\varvec{Le}}} \right)\left( {{\varvec{Nbt}}} \right)}}\left( {\user2{\theta^{\prime}}} \right)^{2} = 0\user2{ } \\ \end{aligned}$$

Similarly, we get

Species concentration equation from (4) in the following form

$$\phi^{\prime\prime} + {\varvec{Sc}}.{\varvec{f}}\phi^{\prime} + \left( {\frac{1}{{{\varvec{Nbt}}}}} \right)\user2{\theta^{\prime\prime}} = 0$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, Y.D., Mebarek-Oudina, F., Goud, B.S. et al. Radiation, Velocity and Thermal Slips Effect Toward MHD Boundary Layer Flow Through Heat and Mass Transport of Williamson Nanofluid with Porous Medium. Arab J Sci Eng 47, 16355–16369 (2022). https://doi.org/10.1007/s13369-022-06825-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06825-2

Keywords

Navigation