Skip to main content
Log in

Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the two-dimensional magnetohydrodynamic steady boundary layer flow of a viscous magnetomicropolar liquid via an extending area. The impact of heat sink/source and chemical reaction is considered. The governing equations are modeled in Cartesian coordinate system. Using the suitable similarity transformations, the partial differential equations system is changed into the nonlinear ordinary differential equations system. The resulting system of equations is solved via mathematical renowned software Mathematica. The impact of diverse parameters through microrotation, concentration, temperature and velocity is examined via graphs. The present study reveals that the velocity is rising function of Soret number, Richardson number and Grashof number. It is mentioned that the greater velocity is located in the case of Newtonian liquid in contrast with the micropolar liquid. In the absence of chemical reaction parameter, the velocity is more as compared with higher chemical reaction parameter. Radiation, Hartmann and chemical reaction parameters augment the temperature. Concentration is a reducing function of radiation, Hartmann and chemical reaction parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Magnetic field strength [Tesla]

C :

Concentration of the liquid [mol m3]

\(C_{\rm p}\) :

Specific heat at constant pressure [J kg1 K1]

\(c_{\rm s}\) :

Concentration susceptibility

D :

Mass diffusivity coefficient [m2 s1]

\(Du\) :

Dufour number [–]

j :

Microinertia density [J m3]

\(g\) :

Acceleration due to gravity [m s2]

\(K_{\rm T}\) :

Thermal diffusive ratio [–]

\(k^{*}\) :

Mean absorption coefficient [m1]

\(K_{\rm c}^{*}\) :

Reaction rate [mol m3 s1]

\(K_{\rm p}^{*}\) :

Permeability parameter [m2]

\(M\) :

Hartmann number [–]

N :

Microrotation vector

\(Pr\) :

Prandtl number [–]

\(q_{\rm r}\) :

Dimensional radiative heat flux [W m2]

\(R\) :

Radiation parameter [–]

\(Sc\) :

Schmidt number [–]

\(Sr\) :

Soret number [–]

T :

Fluid temperature [K]

\(T_{\infty }\) :

Free-stream temperature [K]

\(u,~v\) :

Velocity components [m s1]

\(\alpha\) :

Thermal diffusivity [m2 s1]

\(\upsilon\) :

Kinematic [m2 s1]

\(\beta _{\rm c}\) :

Concentration expansion coefficient [K1]

\(\beta _{\rm T}\) :

Thermal expansion coefficient [K1]

\(\gamma\) :

Chemical reaction parameter [–]

\(\sigma\) :

Electrical conductivity [S m1]

\(\mu\) :

Dynamic viscosity [kg m1 s1]

\(\rho\) :

Fluid density [kg m3]

\(\kappa\) :

Vortex viscosity

\(\psi\) :

Stream function [–]

\(\sigma _{1}\) :

Stefan–Boltzmann constant [W m2 K4]

\(\Gamma\) :

Micropolar fluid parameter

\(\theta\) :

Temperature [–]

\(\lambda\) :

Richardson number [–]

\(\delta\) :

Concentration Grashof number [–]

References

  1. Sui J, Zhao P, Cheng Z, Doi M. Influence of particulate thermophoresis on convection heat and mass transfer in a slip flow of a viscoelasticity-based micropolar fluid. Int J Heat Mass Transfer. 2018;119:40–51.

    Article  Google Scholar 

  2. Mahabaleshwar US, Sarris IE, Lorenzini G. Effect of radiation and Navier slip boundary of Walters’ liquid B flow over a stretching sheet in a porous media. Int J Heat Mass Transf. 2018;127:1327–37.

    Article  Google Scholar 

  3. Chiu HC, Jang JH, Yan WM. Mixed convection heat transfer in horizontal rectangular ducts with radiation effects. Int J Heat Mass Transf. 2007;50:2874–82.

    Article  Google Scholar 

  4. Hayat T, Qayyum S, Alsaedi A, Shafiq A. Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. Int J Heat Mass Transf. 2016;103:99–107.

    Article  CAS  Google Scholar 

  5. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    Article  CAS  Google Scholar 

  6. Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T. Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf. 2016;102:766–72.

    Article  Google Scholar 

  7. Zheng L, Niu J, Zhang X, Mac L. Dual solutions for flow and radiative heat transfer of a micropolar fluid over stretching/shrinking sheet. Int J Heat Mass Transf. 2012;55:7577–86.

    Article  Google Scholar 

  8. Hsiao KL. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int J Heat Mass Transf. 2017;112:983–90.

    Article  Google Scholar 

  9. Mabood F, Ibrahim SM, Rashidi MM, Shadloo MS, Lorenzini G. Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation. Int J Heat Mass Transf. 2016;93:674–82.

    Article  Google Scholar 

  10. Bhattacharyya K, Mukhopadhyay S, Layek GC, Pop I. Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int J Heat Mass Transf. 2012;55:2945–52.

    Article  CAS  Google Scholar 

  11. Reddy MG, Sandeep N. Heat and mass transfer in radiative MHD Carreau fluid with cross diffusion. Ain Shams Eng J. 2018;9:1189–204.

    Article  Google Scholar 

  12. Shateyi S, Motsa SS, Sibanda P. The effects of thermal radiation, Hall currents, Soret, and Dufour on MHD flow by mixed convection over a vertical surface in porous media. Math Problems Eng. 2010;2010:627475.

    Article  CAS  Google Scholar 

  13. Pal D, Mondal H. Effects of Soret Dufour, chemical reaction and thermal radiation on MHD non-Darcy unsteady mixed convective heat and mass transfer over a stretching sheet. Commun Nonlinear Sci Numer Simul. 2011;16:1942–58.

    Article  Google Scholar 

  14. Sohail M, Naz R, Abdelsalam SI. On the onset of entropy generation for a nanofluid with thermal radiation and gyrotactic microorganisms through 3D flows. Physica Scripta. 2020;95(4):045206.

    Article  CAS  Google Scholar 

  15. Hayat T, Qayyum S, Waqas M, Alsaedi A. Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface. J Mol Liq. 2016;224:801–10.

    Article  CAS  Google Scholar 

  16. Qasim M, Afridi MI, Wakif A, Saleem S. Influence of variable transport properties on nonlinear radioactive Jeffrey fluid flow over a disk: utilization of generalized differential quadrature method. Arab J Sci Eng. 2019;44(6):5987–96.

    Article  CAS  Google Scholar 

  17. Dogonchi AS, Waqas M, Ganji DD. Shape effects of Copper-Oxide (CuO) nanoparticles to determine the heat transfer filled in a partially heated rhombus enclosure: CVFEM approach. Int Commun Heat Mass Transf. 2019;107:14–23.

    Article  CAS  Google Scholar 

  18. Waqas M. Diffusion of stratification based chemically reactive Jeffrey liquid featuring mixed convection. Surf Interfaces. 2021;23:100783.

    Article  CAS  Google Scholar 

  19. Hayat T, Khalid H, Waqas M, Alsaedi A. Numerical simulation for radiative flow of nanoliquid by rotating disk with carbon nanotubes and partial slip. Comput Methods Appl Mech Eng. 2018;341:397–408.

    Article  Google Scholar 

  20. Waqas M, Hayat T, Alsaedi A. A theoretical analysis of SWCNT–MWCNT and H2O nanofluids considering Darcy-Forchheimer relation. Appl Nanosci. 2019;9(5):1183–91.

    Article  CAS  Google Scholar 

  21. Hayat T, Waqas M, Shehzad SA, Alsaedi A. Mixed convection flow of a Burgers nanofluid in the presence of stratifications and heat generation/absorption. Eur Phys J Plus. 2016;131(8):253.

    Article  CAS  Google Scholar 

  22. Souayeh B, Ganesh Kumar K, Gnaneswara Reddy M, Rani S, Hdhiri N, Alfannakh H, Rahimi-Gorji M. Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. J Mole Liq. 2019;290:111223.

    Article  CAS  Google Scholar 

  23. Shafiq A, Mebarek-Oudina F, Sindhu TN, Abidi A. A study of dual stratification on stagnation point Walters’ B nanofluid flow via radiative Riga plate: a statistical approach. Eur Phys J Plus. 2021;136:407. https://doi.org/10.1140/epjp/s13360-021-01394-z.

    Article  CAS  Google Scholar 

  24. Hajizadeh A. Free convection flow of nanofluids between two vertical plates with damped thermal flux. J Mole Liq. 2019;289:110964.

    Article  CAS  Google Scholar 

  25. Raza J, Mebarek-Oudina F, Ram P, Sharma S. MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation. Defect Diffus Forum. 2020;401:92–106.

    Article  Google Scholar 

  26. Kishore PM, Rajesh V, Verma SV. The effects of thermal radiation and viscous dissipation on MHD heat and mass diffusion flow past an oscillating vertical plate embedded in a porous medium with variable surface conditions. Theoret Appl Mech. 2012;39:99–125.

    Article  Google Scholar 

  27. Karthikeyan S, Bhuvaneswari M, Rajan S, Sivasankaran S. Thermal radiation effects on MHD convective flowover a plate in a porous medium by perturbation technique. Appl Math Comput Intell. 2013;2(1):75–83.

    Google Scholar 

  28. Hossain MS, Samand MA. Heat and mass Transfer of an MHD free convection flow along a stretching sheet with chemical reaction, radiation and heat generation in presence of magnetic field. Res J Math Stat. 2013;5:5–17.

    Article  Google Scholar 

  29. Hsiao KL. Nanofluid flow with multimedia physical features for conjugate mixed convection and radiation. Comput Fluids. 2014;104(20):1–8.

    Article  Google Scholar 

  30. Waqas MA. Mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions. J Magn Magn Mater. 2020;493:165646.

    Article  CAS  Google Scholar 

  31. Wakif A, Sehaqui R. Generalized differential quadrature scrutinization of an advanced MHD stability problem concerned water-based nanofluids with metal/metal oxide nanomaterials: a proper application of the revised two-phase nanofluid model with convective heating and through flow boundary conditions. Numer Methods Part Diff Equ. 2020. https://doi.org/10.1002/num.22671.

    Article  Google Scholar 

  32. Naz R, Tariq S, Sohail M, Shah Z. Investigation of entropy generation in stratified MHD Carreau nanofluid with gyrotactic microorganisms under Von Neumann similarity transformations. Eur Phys J Plus. 2020;135(2):178.

    Article  Google Scholar 

  33. Khan MI, Khan WA, Waqas M, Kadry S, Chu YM, Nazeer M. Role of dipole interactions in Darcy-Forchheimer first-order velocity slip nanofluid flow of Williamson model with Robin conditions. Appl Nanosci. 2020;10(12):5343–50.

    Article  CAS  Google Scholar 

  34. Zaim A, Aissa A, Mebarek-Oudina F, Mahanthesh B, Lorenzini G, Sahnoun M. Galerkin finite element analysis of magneto-hydrodynamic natural convection of Cu-water nanoliquid in a baffled U-shaped enclosure. Propuls Power Res. 2020;9(4):383–93. https://doi.org/10.1016/j.jppr.2020.10.002.

    Article  Google Scholar 

  35. Nagaraja B, Gireesha BJ. Exponential space-dependent heat generation impact on MHD convective flow of Casson fluid over a curved stretching sheet with chemical reaction. J Therm Anal Calorim. 2021;143:4071–9.

    Article  CAS  Google Scholar 

  36. Bhandari A, Husain A. Optimization of heat transfer properties on ferrofluid flow over a stretching sheet in the presence of static magnetic field. J Therm Anal Calorim. 2021;144(4):1253–70.

    Article  CAS  Google Scholar 

  37. Freidoonimehr N, Rahimi AB. Brownian motion effect on heat transfer of a three-dimensional nanofluid flow over a stretched sheet with velocity slip. J Therm Anal Calorim. 2019;135(1):207–22.

    Article  CAS  Google Scholar 

  38. Mebarek-Oudina F, Keerthi Reddy N, Sankar M. Heat source location effects on buoyant convection of nanofluids in an annulus, advances in fluid dynamics. Lecture Notes Mech Eng. 2021. https://doi.org/10.1007/978-981-15-4308-1_70.

    Article  Google Scholar 

  39. Sohail M, Naz R, Shah Z, Kumam P, Thounthong P. Exploration of temperature dependent thermophysical characteristics of yield exhibiting non-Newtonian fluid flow under gyrotactic microorganisms. AIP Adv. 2019;9(12):125016.

    Article  CAS  Google Scholar 

  40. Zaim A, Aissa A, Mebarek-Oudina F, Rashad MA, Hafiz MA, Sahnoun M, El Ganaoui M. Magnetohydrodynamic natural convection of hybrid nanofluid in a porous enclosure: numerical analysis of the entropy generation. J Therm Anal Calorim. 2020;141(5):1981–92. https://doi.org/10.1007/s10973-020-09690-z.

    Article  CAS  Google Scholar 

  41. Mebarek-Oudina F, Fares R, Aissa A, Lewis RW, H. Abu-Hamdeh N. Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall. Int Commun Heat Mass Trans. 2021;125:105279. https://doi.org/10.1016/j.icheatmasstransfer.2021.105279.

    Article  CAS  Google Scholar 

  42. Alkasassbeh M, Omar Z, Mebarek-Oudina F, Raza J, Chamkha AJ. Heat transfer study of convective fin with temperature-dependent internal heat generation by hybrid block method. Heat Transfer-Asian Res. 2019;48(4):1224–47. https://doi.org/10.1002/htj.21428.

    Article  Google Scholar 

  43. Khan U, Zaib A, Mebarek-Oudina F. Mixed convective magneto flow of SiO2–MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: stability analysis. Arab J Sci Eng. 2020;45:9061–73. https://doi.org/10.1007/s13369-020-04680-7.

    Article  CAS  Google Scholar 

  44. Kahshan M, Lu D, Rahimi-Gorji M. Hydrodynamical study of flow in a permeable channel: application to flat plate dialyzer. Int J Hydrogen Energy. 2019;44(31):17041–7.

    Article  CAS  Google Scholar 

  45. Marzougui S, Mebarek-Oudina F, Aissa A, Magherbi M, Shah Z, Ramesh K. Entropy generation on magneto-convective flow of copper-water nanofluid in a cavity with chamfers. J Therm Anal Calorim. 2021;143(3):2203–14. https://doi.org/10.1007/s10973-020-09662-3.

    Article  CAS  Google Scholar 

  46. Ganesh Kumar K, Avinash BS, Rahimi-Gorji M, Alarifi IM. Optical and electrical properties of Ti1-XSnXO2 nanoparticles. J Mole Liq. 2019;293:111556.

    Article  CAS  Google Scholar 

  47. Sohail M, Naz R, Abdelsalam SI. Application of non-Fourier double diffusions theories to the boundary-layer flow of a yield stress exhibiting fluid model. Physica A Stat Mech Appl. 2020;537:122753.

    Article  CAS  Google Scholar 

  48. Sohail M, Naz R. Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterbynanofluid in stretching cylinder. Physica A Stat Mech Appl. 2020;549:124088.

    Article  CAS  Google Scholar 

  49. Fares R, Mebarek-Oudina F, Aissa A, Bilal SM, Öztop HF. Optimal entropy generation in darcy-forchheimer magnetized flow in a square enclosure filled with silver based water nanoliquid. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10518-z.

    Article  Google Scholar 

  50. Bilal S, Sohail M, Naz R. Heat transport in the convective Casson fluid flow with homogeneous-heterogeneous reactions in Darcy-Forchheimer medium. Multidiscip Model Mater Struct. 2019;15(6):1170–89.

    Article  CAS  Google Scholar 

  51. Bilal S, Sohail M, Naz R, Malik MY, Alghamdi M. Upshot of ohmically dissipated Darcy-Forchheimer slip flow of magnetohydrodynamic Sutter by fluid over radiating linearly stretched surface in view of Cash and Carp method. Appl Math Mech. 2019;40(6):861–76.

    Article  Google Scholar 

  52. Ashraf MU, Qasim M, Wakif A, Afridi MI, Animasaun IL. A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of blood-based nanofluid containing magnetite nanoparticles: a physiological application. Numer Methods Part Diff Equ. 2020. https://doi.org/10.1002/num.22676.

    Article  Google Scholar 

  53. Wakif A, Chamkha A, Animasaun IL, Zaydan M, Waqas H, Sehaqui R. Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal riga plate in the coexistence of wall suction and joule heating effects: a comprehensive numerical investigation. Arab J Sci Eng. 2020;45(11):9423–38.

    Article  CAS  Google Scholar 

  54. Qasim M, Ali Z, Wakif A, Boulahia Z. Numerical simulation of MHD peristaltic flow with variable electrical conductivity and Joule dissipation using generalized differential quadrature method. Commun Theor Phys. 2019;71(5):509.

    Article  CAS  Google Scholar 

  55. Wakif A, Qasim M, Afridi MI, Saleem S, Al-Qarni MM. Numerical examination of the entropic energy harvesting in a magnetohydrodynamic dissipative flow of Stokes’ second problem: utilization of the gear-generalized differential quadrature method. J Non-Equilib Thermodyn. 2019;44(4):385–403.

    Article  CAS  Google Scholar 

  56. Dadheech PK, Agrawal P, Mebarek-Oudina F, Abu-Hamdeh N, Sharma A. Comparative heat transfer analysis of MoS2/C2H6O2 and MoS2- SiO2/ C2H6O2 nanofluids with natural convection and inclined magnetic field. J Nanofluids. 2020; 9(3):161–167. https://doi.org/10.1166/jon.2020.1741

  57. Marzougui S, Bouabid M, Mebarek-Oudina F, Abu-Hamdeh N, Magherbi M, Ramesh K. A computational analysis of heat transport irreversibility phenomenon in a magnetized porous channel. Int J Numer Meth Heat Fluid Flow. 2020. https://doi.org/10.1108/HFF-07-2020-0418.

    Article  Google Scholar 

  58. Seikh AH, Adeyeye O, Omar Z, Raza J, Rahimi-Gorji M, Alharthi N, Khan I. Enactment of implicit two-step Obrechkoff-type block method on unsteady sedimentation analysis of spherical particles in Newtonian fluid media. J Mole Liq. 2019;293:111416.

    Article  CAS  Google Scholar 

  59. Swain K, Mebarek-Oudina F, Abo-Dahab SM. Influence of MWCNT/Fe3O4 hybrid-nanoparticles on an exponentially porous shrinking sheet with variable magnetic field and chemical reaction. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10432-4.

    Article  Google Scholar 

  60. Mebarek-Oudina F. Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Eng Sci Technol. 2017;20(4):1324–33.

    Google Scholar 

  61. Abo-Dahab SM, Abdelhafez MA, Mebarek-Oudina F, Bilal SM. MHD Casson nanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injection. Indian J Phys. 2021. https://doi.org/10.1007/s12648-020-01923-z.

    Article  Google Scholar 

  62. Mebarek-Oudina F. Convective heat transfer of titania nanofluids of different base fluids in cylindrical annulus with discrete heat Source. Heat Transfer-Asian Res. 2019;48:135–47.

    Article  Google Scholar 

  63. Mebarek-Oudina F, Bessaih R, Mahanthesh B, Chamkha AJ, Raza J. Magneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metal. Int J Numer Meth Heat Fluid Flow. 2020;31(4):1172–89.

    Article  Google Scholar 

  64. Kumar KA, Sugunamma V, Sandeep N. Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet. J Therm Anal Calorim. 2020;140(5):2377–85.

    Article  CAS  Google Scholar 

  65. Golafshan B, Rahimi AB. Effects of radiation on mixed convection stagnation-point flow of MHD third-grade nanofluid over a vertical stretching sheet. J Therm Anal Calorim. 2019;135(1):533–49.

    Article  CAS  Google Scholar 

  66. Dutta A, Chattopadhyay H, Yasmin H, Rahimi-Gorji M. Entropy generation in the human lung due to effect of psychrometric condition and friction in the respiratory tract. Comput Methods Programs Biomed. 2019;180:105010.

    Article  PubMed  Google Scholar 

  67. Waqas M, Jabeen S, Hayat T, Khan MI, Alsaedi A. Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating Carreau nanofluid flow subject to heat generation. J Magn Magn Mater. 2019;485:197–204.

    Article  CAS  Google Scholar 

  68. Rajashekhar C, Mebarek-Oudina F, Vaidya H, Prasad KV, Manjunatha G, Balachandra H. Mass and heat transport impact on the peristaltic flow of Ree-Eyring liquid with variable properties for hemodynamic flow. Heat Transf. 2021. https://doi.org/10.1002/htj.22117.

    Article  Google Scholar 

  69. Thumma T, Wakif A, Animasaun IL. Generalized differential quadrature analysis of unsteady three-dimensional MHD radiating dissipative Casson fluid conveying tiny particles. Heat Transf. 2020;49(5):2595–626.

    Article  Google Scholar 

  70. Raza J, Mebarek-Oudina F, Chamkha AJ. Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscip Model Mater Struct. 2019;15(4):737–57.

    Article  CAS  Google Scholar 

  71. Swain K, Mahanthesh B, Mebarek-Oudina F. Heat transport and stagnation-point flow of magnetized nanoliquid with variable thermal conductivity with Brownian moment and thermophoresis aspects. Heat Transf. 2021;50:754–67.

    Article  Google Scholar 

  72. Wakif A, Chamkha A, Thumma T, Animasaun IL, Sehaqui R. Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J Therm Anal Calorim. 2021;143:1201–20.

    Article  CAS  Google Scholar 

  73. Mebarek-Oudina F, Aissa A, Mahanthesh B, Oztop HF. Heat transport of magnetized newtonian nanoliquids in an annular space between porous vertical cylinders with discrete heat source. Int Comm Heat Mass Transf. 2020;117:104737. https://doi.org/10.1016/j.icheatmasstransfer.2020.104737.

    Article  Google Scholar 

  74. Djebali R, Mebarek-Oudina F, Choudhari R. Similaritysolution analysis of dynamic and thermal boundary layers: further formulation along a vertical flat plate. Physica Scripta. 2021;96(8):085206. https://doi.org/10.1088/1402-4896/abfe31.

  75. Aman F, Ishak A, Pop I. MHD stagnation point flow of a micropolar fluid toward a vertical plate with a convective surface boundary condition. Bull Malaysian Math Sci Soc. 2013;36(4):865–79.

    Google Scholar 

  76. Makinde OD, Khan WA, Khan ZH. Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat. Proc Inst Mech Eng Part E J Process Mech Eng. 2017;231(4):695–703.

    Article  CAS  Google Scholar 

  77. Baag S, Mishra SR, Dash GC, Acharya MR. Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction. J King Saud Univ-Eng Sci. 2017;29(1):75–83.

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through the Research Group under grant number (R.G.P.2/50/ 42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mebarek-Oudina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warke, A.S., Ramesh, K., Mebarek-Oudina, F. et al. Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet. J Therm Anal Calorim 147, 6901–6912 (2022). https://doi.org/10.1007/s10973-021-10976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10976-z

Keywords

Navigation