Skip to main content

Advertisement

Log in

Effect of Plasticizer and Compatibilizer on Properties of Polybutylene Adipate-Co-Terephthalate (PBAT) with Acetylated Starch

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Immiscible and incompatibility between the hydrophilic fiber phase and hydrophobic matrix phase results in a poor stress transfer between the two phases and deterioration in mechanical, physical, and barrier properties. Thus, this study aims to enhance the compatibility between hydrophobic polybutylene adipate-co-terephthalate (PBAT) and hydrophilic nature corn starch (CS) by substituting native corn starch with acetylated corn starch (ACS). The acetylation treatment was used to improve the hydrophobicity of corn starch. The native corn starch was used as a reference to study the effect of acetylation. Challenges in incorporating fillers into hydrophobic PBAT were overcome by adding plasticizer; sorbitol (S) and compatibilizers; maleic anhydride (MAH) and dicumyl peroxide (DCP). The composite films were characterized by fourier transform infrared (FTIR), tensile properties, differential scanning calorimetry (DSC), water contact angle (WCA) measurement, and thermogravimetric analysis (TGA). The morphology of the composites was examined by scanning electron microscopy (SEM). The tensile properties of PBAT/ACS were improved by adding compatibilizers. Meanwhile, adding plasticizer improved the tensile properties of PBAT/CS. PBAT/ACS/MAH composite possessed a tensile strength of 15.47 MPa, modulus of 95.30 MPa, and strain at break of 170.81%, while PBAT/CS/30S composite possessed tensile strength of 8.59 MPa, modulus of 104.60 MPa and strain at break of 1037.91% which have potential use in packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study cannot be shared at this time as the data forms part of an ongoing study and due to legal reasons.

References

  1. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511. https://doi.org/10.1021/acssuschemeng.9b0663

    Article  CAS  Google Scholar 

  2. Doppalapudi S, Jain A, Khan W, Domb AJ (2014) Biodegradable polymers-an overview. Polym Adv Technol 25:427–435. https://doi.org/10.1002/pat.3305

    Article  CAS  Google Scholar 

  3. Muthuraj R, Misra M, Mohanty AK (2018) Biodegradable compatibilized polymer blends for packaging applications: a literature review. J Appl Polym Sci 135:45726. https://doi.org/10.1002/app.45726

    Article  CAS  Google Scholar 

  4. Aversa C, Barletta M, Cappiello G, Gisario A (2022) Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: a state-of-art review. Eur Polym J 173:111304. https://doi.org/10.1016/j.eurpolymj.2022.11130

    Article  CAS  Google Scholar 

  5. Ambrosio G, Faglia G, Tagliabue S, Baratto C (2021) Study of the degradation of biobased plastic after stress tests in water. Coatings 11:1–17. https://doi.org/10.3390/coatings11111330

    Article  CAS  Google Scholar 

  6. Dammak M, Fourati Y, Tarrés Q, Delgado-Aguilar M, Mutjé P, Boufi S (2020) Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.112061

    Article  Google Scholar 

  7. Fourati Y, Tarrés Q, Delgado-Aguilar M, Mutjé P, Boufi S (2021) Cellulose nanofibrils reinforced PBAT/TPS blends: mechanical and rheological properties. Int J Biol Macromol 183:267–275. https://doi.org/10.1016/j.ijbiomac.2021.04.102

    Article  CAS  PubMed  Google Scholar 

  8. Yap SY, Sreekantan S, Hassan M, Sudesh K, Ong MT (2020) Characterization and biodegradability of rice husk-filled polymer composites. Polymers 13:104. https://doi.org/10.3390/polym13010104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moustafa H, Guizani C, Dufresne A (2017) Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. J Appl Polym Sci 134:1–11. https://doi.org/10.1002/app.44498

    Article  CAS  Google Scholar 

  10. Thomas SK, Parameswaranpillai J, Krishnasamy S, Begum PMS, Nandi D, Siengchin S, George JJ, Hameed N, Salim NV, Sienkiewicz N (2021) A comprehensive review on cellulose, chitin, and starch as fillers in natural rubber biocomposites. Carbohydr Polym Technol Appl. https://doi.org/10.1016/j.carpta.2021.100095

    Article  Google Scholar 

  11. Ramdani N, Derradji M, Mokhnache EO (2022) Natural fiber reinforced polybenzoxazine composites: a review. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2022.103645

    Article  Google Scholar 

  12. Zhu J, Abeykoon C, Karim N (2021) Investigation into the effects of fillers in polymer processing. Int J Lightweight Mater Manuf 4:370–382. https://doi.org/10.1016/j.ijlmm.2021.04.003

    Article  CAS  Google Scholar 

  13. Meng L, Yu L, Khalid S, Liu H, Zhang S, Duan Q, Chen L (2019) Preparation, microstructure and performance of poly (lactic acid)-Poly (butylene succinate-co-butyleneadipate)-starch hybrid composites. Compos B Eng. https://doi.org/10.1016/j.compositesb.2019.107384

    Article  Google Scholar 

  14. Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262. https://doi.org/10.1016/j.carbpol.2016.02.035

    Article  CAS  PubMed  Google Scholar 

  15. Lackner M, Ivanič F, Kováčová M, Chodák I (2021) Mechanical properties and structure of mixtures of poly(butylene-adipate-co-terephthalate) (PBAT) with thermoplastic starch (TPS). Int J Biobased Plast 3:126–138. https://doi.org/10.1080/24759651.2021.1882774

    Article  CAS  Google Scholar 

  16. Threepopnatkul P, Thongloy P, Janpromdee W, Utamachote S, Phattarateera S (2021) Effect of fruit peel extracts on properties of PVA composites films for agricultural applications. Mater Today: Proc 47:3560–3564. https://doi.org/10.1016/j.matpr.2021.03.560

    Article  CAS  Google Scholar 

  17. Ballesteros-Mártinez L, Pérez-Cervera C, Andrade-Pizarro R (2020) Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS J 20:1–9. https://doi.org/10.1016/j.nfs.2020.06.002

    Article  Google Scholar 

  18. Chuayjuljit S, Hosililak S, Athisart A (2009) Thermoplastic cassava starch/sorbitol-modified montmorillonite nanocomposites blended with low density polyethylene: properties and biodegradability study. J Met Mater Miner 19:59–65

    CAS  Google Scholar 

  19. Lim WS, Ock SY, Park GD, Lee IW, Lee MH, Park HJ (2020) Heat-sealing property of cassava starch film plasticized with glycerol and sorbitol. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2020.100556

    Article  Google Scholar 

  20. Ivanič F, Kováčová M, Chodák I (2019) The effect of plasticizer selection on properties of blends poly(butylene adipate-co-terephthalate) with thermoplastic starch. Eur Polym J 116:99–105. https://doi.org/10.1016/j.eurpolymj.2019.03.042

    Article  CAS  Google Scholar 

  21. Fourati Y, Tarrés Q, Mutjé P, Boufi S (2018) PBAT/thermoplastic starch blends: effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydr Polym 199:51–57. https://doi.org/10.1016/j.carbpol.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  22. Xiong SJ, Pang B, Zhou SJ, Li MK, Yang S, Wang YY et al (2020) Economically competitive biodegradable PBAT/lignin composites: effect of lignin methylation and compatibilizer. ACS Sustain Chem Eng 8:5338–5346. https://doi.org/10.1021/acssuschemeng.0c00789

    Article  CAS  Google Scholar 

  23. Gupta A, Chudasama B, Chang BP, Mekonnen T (2021) Robust and sustainable PBAT – Hemp residue biocomposites: reactive extrusion compatibilization and fabrication. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2021.109014

    Article  Google Scholar 

  24. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2015) Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers 7:1106–1124. https://doi.org/10.3390/polym7061106

    Article  CAS  Google Scholar 

  25. Ojogbo E, Ogunsona EO, Mekonnen TH (2020) Chemical and physical modifications of starch for renewable polymeric materials. Mater Today Sustain. https://doi.org/10.1016/j.mtsust.2019.100028

    Article  Google Scholar 

  26. Lewicka K, Siemion P, Kurcok P (2015) Chemical modifications of starch: microwave effect. Int J Polym Sci. https://doi.org/10.1155/2015/867697

    Article  Google Scholar 

  27. Noivoil N, Yoksan R (2021) Compatibility improvement of poly(lactic acid)/thermoplastic starch blown films using acetylated starch. J Appl Polym Sci 138:1–16. https://doi.org/10.1002/app.49675

    Article  CAS  Google Scholar 

  28. Fávaro SL, Lopes MS, de Carvalho V, Neto AG, Rogério de Santana R, Radovanovic E (2010) Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos A Appl Sci Manuf 41:154–160. https://doi.org/10.1016/j.compositesa.2009.09.021

    Article  CAS  Google Scholar 

  29. Trela VD, Ramallo AL, Albani OA (2020) Synthesis and characterization of acetylated cassava starch with different degrees of substitution. Braz Arch Biol Technol 63:1–13. https://doi.org/10.1590/1678-4324-2020180292

    Article  CAS  Google Scholar 

  30. Palacio S, Aitkenhead M, Escudero A, Montserrat-Martí G, Maestro M, Robertson AHJ (2014) Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS ONE. https://doi.org/10.1371/journal.pone.0107285

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kumar P, Ganure AL, Subudhi BB, Shukla S (2013) Synthesis and characterization of ph sensitive ampiphillic new copolymer of methyl methacrylate grafted on modified starch: influences of reaction variables on grafting parameters. Int J Pharm Pharm Sci 6:868–880

    Google Scholar 

  32. Chi H, Xu K, Wu X, Chen Q, Xue D, Song C, Zhang W, Wang P (2008) Effect of acetylation on the properties of corn starch. Food Chem 106:923–928. https://doi.org/10.1016/j.foodchem.2007.07.002

    Article  CAS  Google Scholar 

  33. Pi-xin W, Xiu-li W, Xue D, hua, Xu K, Tan Y, Du X bing, Li W bo, (2009) Preparation and characterization of cationic corn starch with a high degree of substitution in dioxane-THF-water media. Carbohydr Res 344:851–855. https://doi.org/10.1016/j.carres.2009.02.023

    Article  CAS  PubMed  Google Scholar 

  34. Cai Y, Lv J, Feng J (2013) Spectral characterization of four kinds of biodegradable plastics: poly (lactic acid), poly (butylenes adipate-co-terephthalate), poly (hydroxybutyrate-co-hydroxyvalerate) and poly (butylenes succinate) with FTIR and Raman spectroscopy. J Polym Environ 21:108–114. https://doi.org/10.1007/s10924-012-0534-2

    Article  CAS  Google Scholar 

  35. Wei B, Zhao Y, Wei Y, Yao J, Chen X, Shao Z (2019) Morphology and properties of a new biodegradable material prepared from zein and poly(butylene adipate-terephthalate) by reactive blending. ACS Omega 4:5609–5616. https://doi.org/10.1021/acsomega.9b00210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wadaugsorn K, Panrong T, Wongphan P, Harnkarnsujarit N (2022) Plasticized hydroxypropyl cassava starch blended PBAT for improved clarity blown films: morphology and properties. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2021.114311

    Article  Google Scholar 

  37. Li M, Jia Y, Shen X, Shen T, Tan Z, Zhuang W, Zhao G, Zhu C, Ying H (2021) Investigation into lignin modified PBAT/thermoplastic starch composites: thermal, mechanical, rheological and water absorption properties. Ind Crops Prod 171:113916. https://doi.org/10.1016/j.indcrop.2021.113916

    Article  CAS  Google Scholar 

  38. Garg S, Jana AK (2014) Preparation of LDPE-acetylated/butyrylated starch blend blow films and characterization. Chin J Polym Sci 32:268–279. https://doi.org/10.1007/s10118-014-1403-3

    Article  CAS  Google Scholar 

  39. Moustafa H, Guizani C, Dupont C, Martin V, Jeguirim M, Dufresne A (2017) Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustain Chem Eng 5:1906–1916. https://doi.org/10.1021/acssuschemeng.6b02633

    Article  CAS  Google Scholar 

  40. Da Silva NMC, Correia PRC, Druzian JI, Fakhouri FM, Fialho RLL, De Albuquerque ECMC (2017) PBAT/TPS composite films reinforced with starch nanoparticles produced by ultrasound. Int J Polym Sci. https://doi.org/10.1155/2017/4308261

    Article  Google Scholar 

  41. Altayan MM, Al Darouich T, Karabet F (2017) On the plasticization process of potato starch: preparation and characterization. Food Biophys 12:397–403. https://doi.org/10.1007/s11483-017-9495-2

    Article  Google Scholar 

  42. González Seligra P, Eloy Moura L, Famá L, Druzian JI, Goyanes S (2016) Influence of incorporation of starch nanoparticles in PBAT/TPS composite films. Polym Int 65:938–945. https://doi.org/10.1002/pi.5127

    Article  CAS  Google Scholar 

  43. Nanni A, Cancelli U, Montevecchi G, Masino F, Messori M, Antonelli A (2021) Functionalization and use of grape stalks as poly(butylene succinate) (PBS) reinforcing fillers. Waste Manage 126:538–548. https://doi.org/10.1016/j.wasman.2021.03.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Higher Education of Malaysia under the Fundamental Research Grant Scheme (FRGS) with Project Code: FRGS/1/2021/TK0/USM/01/1.

Funding

This work was supported by the Ministry of Higher Education of Malaysia for the Fundamental Research Grant Scheme (FRGS) with Project Code: FRGS/1/2021/TK0/USM/01/1.

Author information

Authors and Affiliations

Authors

Contributions

Author Statement Niresha Perumal: Conceptualization, Methodology, Investigation, Experimental, Visualisation, Writing—Original Draft. Srimala Sreekantan: Methodology, Writing—Review Editing, Visualization, Supervision, Project Administration, Funding acquisition. Zuratul Ain Abdul Hamid: Methodology, Writing—Review Editing, Visualization, Supervision. Arjulizan Rusli: Methodology, Investigation, Experimental. Kesaven Bhubalan: Methodology, Investigation, Experimental. Jimmy Nelson Appaturi: Writing—Reviewing and Editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Srimala Sreekantan.

Ethics declarations

Conflict of interest

The authors declared that no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perumal, N., Sreekantan, S., Hamid, Z.A.A. et al. Effect of Plasticizer and Compatibilizer on Properties of Polybutylene Adipate-Co-Terephthalate (PBAT) with Acetylated Starch. J Polym Environ 32, 289–302 (2024). https://doi.org/10.1007/s10924-023-02964-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02964-1

Keywords

Navigation