Skip to main content

Advertisement

Log in

Influence of hydrophilic polymers addition into cinnarizine–β-cyclodextrin complexes on drug solubility, drug liberation behaviour and drug permeability

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aims of this study were (1) to prepare cinnarizine (CNZ)–β-cyclodextrin (β-CD) complexes by the kneading, co-precipitation and co-evaporation methods with (ternary system) or without (binary system) the addition of two different hydrophilic polymers [hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP)] in their two different grades (HPMC E5-LV or K4M and PVP K-25 or K-30) and (2) to determine the polymers influence on enhancing the CNZ solubility and the in vitro CNZ liberation behaviour or drug permeation characteristics via artificial membrane from the prepared CNZ–β-CD binary and ternary complexes in 0.1 N HCl (pH 1.2). The presence of hydrophilic polymers in ternary complex system did produce irregular-shaped but smooth-surfaced particles while binary complex system (with no polymer addition) did not. The ternary complexes prepared with HPMC K4M, β-CD and CNZ showed higher solubility efficiency value compared to other tested hydrophilic polymers to make ternary complex systems. Consequently, irrespective of the three preparation methods, the ternary complex systems exhibited higher drug libration behaviour in comparison to the binary complex system, physical mixtures and CNZ powder. But because of the possible presence of a solubility and permeability interplay or tradeoff particularly in the binary and ternary complex systems, the CNZ permeation amount in 0.1 N HCl (pH 1.2) via artificial membrane was established to a minimum compared to the CNZ powder. Therefore, the CNZ–β-CD complexes with or without the HPMC and PVP should unequivocally be used with great care by considering the solubility–permeability interplay or tradeoff into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Terland O, Flatmark T (1999) Drug-induced parkinsonism: cinnarizine and flunarizine are potent uncouplers of the vacuolar H+-ATPase in catecholamine storage vesicles. Neuropharmacology 38(6):879–882

    Article  CAS  PubMed  Google Scholar 

  2. Singh BN (1968) The mechanism of action of calcium antagonists relative to their clinical applications. Br J Clin Pharmacol 21(Suppl 2):109–121

    Google Scholar 

  3. Nicholson AN, Stone BM, Turner C, Mills SL (2002) Central effects of cinnarizine: restricted use in aircrew. Aviat Space Environ Med 73(6):570–574

    CAS  PubMed  Google Scholar 

  4. Peeters K, De Maesschalck R, Bohets H, Vanhoutte K, Nagels L (2006) In situ dissolution testing using potentiometric sensors. Eur J Pharm Sci 34:243–249

    Article  CAS  Google Scholar 

  5. Jarvinen T, Jarvinen K, Schwarting N, Stella VJ (1995) Beta-cyclodextrin derivatives, SBE4-beta-CD and HP-beta-CD, increase the oral bioavailability of cinnarizine in beagle dogs. J Pharm Sci 84:295–299

    Article  CAS  PubMed  Google Scholar 

  6. Bergstrom CA, Wassvik CM, Johansson K, Hubatsch I (2007) Poorly soluble marketed drugs display solvation limited solubility. J Med Chem 50:5858–5862

    Article  CAS  PubMed  Google Scholar 

  7. Branchu S, Rogueda PG, Plumb AP, Cook WG (2007) A decision-support tool for the formulation of orally active, poorly soluble compounds. Eur J Pharm Sci 32:128–139

    Article  CAS  PubMed  Google Scholar 

  8. Gu CH, Rao D, Gandhi RB, Hilden J, Raghavan K (2005) Using a novel multicompartment dissolution system to predict the effect of gastric pH on the oral absorption of weak bases with poor intrinsic solubility. J Pharm Sci 94(1):199–208

    Article  CAS  PubMed  Google Scholar 

  9. Yamada I, Goda T, Kawata M, Ogawa K (1990) Application of gastric acidity-controlled beagle dog to bioavailability study of cinnarizine. Yakugaku Zasshi 110:280–285

    Article  CAS  PubMed  Google Scholar 

  10. Ogata H, Aoyagi N, Kaniwa N, Ejima A, Sekine N, Kitamura K, Inoue M (1986) Gastric acidity dependent bioavailability of cinnarizine from two commercial capsules in healthy volunteers. Int J Pharm 29:113–120

    Article  CAS  Google Scholar 

  11. Larsen AT, Akesson P, Jureus A, Saaby L, Abu-Rmaileh R, Abrahamsson B, Østergaard J, Müllertz A (2013) Bioavailability of cinnarizine in dogs: effect of SNEDDS loading level and correlation with cinnarizine solubilization during in vitro lipolysis. Pharm Res 30(12):3101–3113. doi:10.1007/s11095-013-1145-x

    Article  CAS  PubMed  Google Scholar 

  12. Berlin M, Przyklenk K-H, Richtberg A, Baumann W, Dressman JB (2014) Prediction of oral absorption of cinnarizine—a highly supersaturating poorly soluble weak base with borderline permeability. Eur J Pharm Biopharm 88(3):795–806. doi:10.1016/j.ejpb.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  13. Koumandrakis N, Vertzoni M, Reppas C. Increasing the biorelevance of simulated intestinal fluids for better predictions of drug equilibrium solubility in the fasted upper small intestine. In: 9th world meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology, Lisbon, Portugal, 31 March–3 April, 2014

  14. Rao S, Richter K, Nguyen TH, Boyd BJ, Porter CJH, Tan A, Prestidge CA (2015) Pluronics-functionalized silica-lipid hybrid microparticles: improving the oral delivery of poorly water-soluble weak bases. Mol Pharm 12:4423. doi:10.1021/acs.molpharmaceut.5b00622

    Article  CAS  Google Scholar 

  15. Anby MU, Williams HD, McIntosh M, Benameur H, Edwards GA, Pouton CW, Porter CJH (2012) Lipid digestion as a trigger for supersaturation: evaluation of the impact of supersaturation stabilization on the in vitro and in vivo performance of self-emulsifying drug delivery systems. Mol Pharm 9(7):2063–2079

    Article  CAS  PubMed  Google Scholar 

  16. Vandecruys R, Peeters J, Verreck G, Brewster ME (2007) Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int J Pharm 342(1–2):168–175

    Article  CAS  PubMed  Google Scholar 

  17. Redenti E, Szente L, Szejtli J (2000) Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J Pharm Sci 89:1–8

    Article  CAS  PubMed  Google Scholar 

  18. Mura P, Faucci MT, Manderioli A, Bramanti G (2001) Multicomponent systems of econazole with hydroxyacids and cyclodextrins. J Incl Phenom Macrocycl Chem 39:131–138

    Article  CAS  Google Scholar 

  19. Higuchi T, Connors KA (1965) Phase solubility techniques. Adv Anal Chem Instrum 4:117–122

    CAS  Google Scholar 

  20. Affandi MMRMM, Tripathy M, Shah SAA, Majeed ABA (2016) Solubility enhancement of simvastatin by arginine: thermodynamics, solute-solvent interactions, and spectral analysis. Drug Design Dev Ther 10:959–969

    Article  CAS  Google Scholar 

  21. Maragos S, Archontaki H, Macheras P, Valsami G (2009) Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel. AAPS PharmSciTech 10:1444–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lamie NT, Monir HH (2016) Simultaneous determination of cinnarizine and dimenhydrinate in binary mixture using chromatographic methods. J Chromatogr Sci 54(1):36–42. doi:10.1093/chromsci/bmv103

    Article  CAS  PubMed  Google Scholar 

  23. Raghuvanshi S, Pathak K (2014) Recent advances in delivery systems and therapeutics of cinnarizine: a poorly water soluble drug with absorption window in stomach. J Drug Deliv. doi:10.1155/2014/479246 (Article ID 479246)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lindfors L, Skantze P, Skantze U, Rasmusson M, Zackrisson A, Olsson U (2006) Amorphous drug nanosuspensions. 1. Inhibition of Ostwald ripening. Langmuir 22(3):906–910

    Article  CAS  PubMed  Google Scholar 

  25. Mehta DM, Parejiya PB, Barot BS, Shelat PK (2012) Investigation of the drug release modulating effect of acidifiers in modified release oral formulation of cinnarizine. Asian J Pharm Sci 7(3):193–201

    Google Scholar 

  26. Tran TT, Tran PH, Choi H, Han H, Lee B (2010) The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm 384(1–2):60–66

    Article  CAS  PubMed  Google Scholar 

  27. Gabr KE (1992) Effect of organic acids on the release patterns of weakly basic drugs from inert sustained-release matrix tablets. Eur J Pharm Biopharm 38(6):199–202

    CAS  Google Scholar 

  28. Tokumura T, Tsushima Y, Tatsuishi K, Kayano M, Machida Y, Nagai T (1987) Enhancement of the oral bioavailability of cinnarizine in oleic acid in beagle dogs. J Pharm Sci 76(4):286–288

    Article  CAS  PubMed  Google Scholar 

  29. Larsen AT, Ohlsson AG, Polentarutti B, Barker RA, Phillips AR, Abu-Rmaileh R, Dickinson PA, Abrahamsson B, Østergaard J, Müllertz A (2013) Oral bioavailability of cinnarizine in dogs: relation to SNEDDS droplet size, drug solubility and in vitro precipitation. Eur J Pharm Sci 48(1–2):339–350

    Article  CAS  PubMed  Google Scholar 

  30. Lee KW, Porter CJ, Boyd BJ (2013) The effect of administered dose of lipid-based formulations on the in vitro and in vivo performance of cinnarizine as a model poorly water-soluble drug. J Pharm Sci 102(2):565–578

    Article  CAS  PubMed  Google Scholar 

  31. Larsen AT, Ogbonna A, Abu-Rmaileh R, Abrahamsson B, Østergaard J, Müllertz A (2012) SNEDDS containing poorly water soluble cinnarizine; development and in vitro characterization of dispersion, digestion and solubilization. Pharmaceutics 4(4):641–665. doi:10.3390/pharmaceutics4040641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kalava BS, Demirel M, Yazan Y (2005) Physicochemical characterization and dissolution properties of cinnarizine solid dispersion. Turk J Pharm Sci 2(2):51–62

    CAS  Google Scholar 

  33. Tokumura T, Ueda H, Tsushima Y, Kasai M, Kayano M, Amada I, Machida Y, Nagai T (1984) Inclusion complex of cinnarizine with β-cyclodextrin in aqueous solution and in solid state. J Incl Phenom Macrocycl Chem 2(3–4):511–521

    Article  CAS  Google Scholar 

  34. Tokumura T, Nanba M, Tsushima Y, Tatsuishi K, Kayano M, Machida Y, Nagai T (1986) Enhancement of bioavailability of cinnarizine from its β-cyclodextrin complex on oral administration with dl-phenylalanine as a competing agent. J Pharm Sci 75(4):391–394

    Article  CAS  PubMed  Google Scholar 

  35. Tokumura T, Tsushima Y, Tatsuishi K, Kayano M, Machida Y, Nagai T (1986) Enhancement of the bioavailability of cinnarizine from its β-cyclodextrin complex on oral administration with l-isoleucine as a competing agent. Chem Pharm Bull 34(3):1275–1279

    Article  CAS  PubMed  Google Scholar 

  36. Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 198:2035–2044

    Article  Google Scholar 

  37. Loftsson T, Másson M, Brewster ME (2004) Self-association of cyclodextrins and cyclodextrin complexes. J Pharm Sci 93:1091–1099

    Article  CAS  PubMed  Google Scholar 

  38. Loftsson T, Magnúsdóttir A, Másson M, Sigurjónsdóttir JF (2002) Self-association and cyclodextrin solubilization of drugs. J Pharm Sci 91:2307–2316

    Article  CAS  PubMed  Google Scholar 

  39. Loftsson T, Másson M, Sigurjónsdóttir JF (1999) Methods to enhance the complexation efficiency of cyclodextrins. STP Pharma Sci 9:237–242

    CAS  Google Scholar 

  40. Loftsson T, Hreinsdottir D, Masson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302(1–2):18–28

    Article  CAS  PubMed  Google Scholar 

  41. Palani R, Kalavathy S (2011) Volumetric compressibility and transport studies on molecular interactions of mono, di and tri saccharides in aqueous sodium butyrate mixtures at 303.15 K. Adv Appl Sci Res 2:146–155

    CAS  Google Scholar 

  42. Şoica C, Gyeresi A, Dehelean C, Peev C, Aigner Z, Kata M (2008) Thin-layer chromatography as analytical method for inclusion complexes of some diuretics with cyclodextrins. Farmacia 56(1):75–82

    Google Scholar 

  43. Fernandes CM, Vieira MT, Veiga FJB (2002) Physicochemical characterization and in vitro dissolution behaviour of nicardipine β-cyclodextrins inclusion compounds. Eur J Pharm Sci 15:79–88

    Article  CAS  PubMed  Google Scholar 

  44. Beig A, Lindley D, Miller JM, Agbaria R, Dahan A (2016) Hydrotropic solubilization of lipophilic drugs for oral delivery: the effects of urea and nicotinamide on carbamazepine solubility–permeability interplay. Front Pharmacol 7:379. doi:10.3389/fphar.2016.00379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dahan A, Beig A, Lindley D, Miller JM (2016) The solubility–permeability interplay and oral drug formulation design: two heads are better than one. Adv Drug Deliv Rev 101:99–107. doi:10.1016/j.addr.2016.04.018

    Article  CAS  PubMed  Google Scholar 

  46. Beig A, Agbaria R, Dahan A (2015) The use of captisol (SBE7-b-CD) in oral solubility-enabling formulations: comparison to HPβCD and the solubility–permeability interplay. Eur J Pharm Sci 77:73–78. doi:10.1016/j.ejps.2015.05.024

    Article  CAS  PubMed  Google Scholar 

  47. Beig A, Miller JM, Lindley D, Carr RA, Zocharski P, Agbaria R, Dahan A (2015) Head-to-head comparison of different solubility-enabling formulations of etoposide and their consequent solubility–permeability interplay. J Pharm Sci 104:2941–2947. doi:10.1002/jps.24496

    Article  CAS  PubMed  Google Scholar 

  48. Beig A, Agbaria R, Dahan A (2013) Oral delivery of lipophilic drugs: the tradeoff between solubility increase and permeability decrease when using cyclodextrin-based formulations. PLoS One 8:e68237. doi:10.1371/journal.pone.0068237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dahan A, Miller J (2012) The solubility–permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J 14:244–251. doi:10.1208/s12248-012-9337-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dahan A, Miller JM, Hoffman A, Amidon GE, Amidon GL (2010) The solubility–permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci 99:2739–2749. doi:10.1002/jps.22033

    Article  CAS  PubMed  Google Scholar 

  51. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2015) Introduction to spectroscopy, 5th edn. Cengage Learning Private Limited, New Delhi

    Google Scholar 

Download references

Acknowledgements

The encouragement and support given by the management of Lovely Professional University, India, to perform this research work is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunmugaperumal Tamilvanan.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

289_2017_2203_MOESM1_ESM.jpg

Supplementary Fig. 1. Thermograms obtained by differential scanning calorimetry (A) cinnarizine (CNZ), (B) β-cyclodextrin (β-CD), (C) HPMC K4M, (D) Physical mixture of ternary complexes made using HPMC K4M, β-CD and CNZ, (E) Ternary complexes prepared by Kneading method, (F) Ternary complexes made by co-precipitation method (Mid-point melting temperature and fusion enthalpy values are shown in Table 4) 1 (JPEG 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Kumar, M., Gupta, S. et al. Influence of hydrophilic polymers addition into cinnarizine–β-cyclodextrin complexes on drug solubility, drug liberation behaviour and drug permeability. Polym. Bull. 75, 2987–3009 (2018). https://doi.org/10.1007/s00289-017-2203-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2203-z

Keywords

Navigation