DOI QR코드

DOI QR Code

Decision Level Fusion of Multifrequency Polarimetric SAR Data Using Target Decomposition based Features and a Probabilistic Ratio Model

타겟 분해 기반 특징과 확률비 모델을 이용한 다중 주파수 편광 SAR 자료의 결정 수준 융합

  • Chi, Kwang-Hoon (Geoscience Information Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, No-Wook (Geoscience Information Center, Korea Institute of Geoscience and Mineral Resources)
  • 지광훈 (한국지질자원연구원 지질자원정보센터) ;
  • 박노욱 (한국지질자원연구원 지질자원정보센터)
  • Published : 2007.04.30

Abstract

This paper investigates the effects of the fusion of multifrequency (C and L bands) polarimetric SAR data in land-cover classification. NASA JPL AIRSAR C and L bands data were used to supervised classification in an agricultural area to simulate the integration of ALOS PALSAR and Radarsat-2 SAR data to be available. Several scattering features derived from target decomposition based on eigen value/vector analysis were used as input for a support vector machines classifier and then the posteriori probabilities for each frequency SAR data were integrated by applying a probabilistic ratio model as a decision level fusion methodology. From the case study results, L band data had the proper amount of penetration power and showed better classification accuracy improvement (about 22%) over C band data which did not have enough penetration. When all frequency data were fused for the classification, a significant improvement of about 10% in overall classification accuracy was achieved thanks to an increase of discrimination capability for each class, compared with the case of L band Shh data.

이 논문에서는 토지 피복분류를 목적으로 C 밴드와 L 밴드 다중 편광 자료의 결정 수준 융합을 수행하여 융합 효과를 살펴보았다. 앞으로 이용이 가능해질 C 밴드 Radarsat-2 자료와 L 밴드 ALOS PALSAR 자료를 모사하기 위해 C 밴드와 L 밴드 NASA JPL AIRSAR 자료를 감독분류에 이용하였다. Target decomposition으로부터 얻어지는 산란 특성과 관련된 특징들을 입력으로 SVM을 분류 기법으로 적용한 후에, 사후확률을 확률비 모델의 틀안에서 융합하는 결정수준 융합을 수행하였다. 적용 결과, L 밴드가 C 밴드에 비해 피복 구분에 적절한 투과 심도를 나타내어 22% 정도 높은 분류 정확도를 나타내었지만, 결정수준 융합을 통해 개별 토지피복 항목의 구분력의 향상으로 인해 L 밴드 자료의 분류결과에 비해 10% 정도의 보다 향상된 분류 정확도를 얻을 수 있었다.

Keywords

References

  1. 이상훈, 2003. 퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류, 대한원격탐사학회지, 19(4): 329-339 https://doi.org/10.7780/kjrs.2003.19.4.329
  2. Bazi, Y. and F. Melgani, 2006. Toward on optimal SVM classification system for hyeprspectral remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3374-3385 https://doi.org/10.1109/TGRS.2006.880628
  3. Bordley, R. F., 1982. A multiplicative formula for aggregating probability assessment, Management Science, 28(10): 1137-1148 https://doi.org/10.1287/mnsc.28.10.1137
  4. Cloude S. R. and E. Pottier, 1996. A review of target decomposition theorems in radar polarimetry, IEEE Transactions on Geoscience and Remote Sensing, 34(2): 498-518 https://doi.org/10.1109/36.485127
  5. Cloude S. R. and E. Pottier, 1997. An entropy based classification scheme for land applications of polarimetric SAR, IEEE Transactions on Geoscience and Remote Sensing, 35(1): 68-78 https://doi.org/10.1109/36.551935
  6. Cristianini, N. and J. Shawe-Taylor, 2000. An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK
  7. Ferro-Famil, L., E. Potteir, and J.-S. Lee, 2001. Unsupervised classificatoin of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier, IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2332-2342 https://doi.org/10.1109/36.964969
  8. Foody, G. M. and A. Mathur, 2004. A relative evaluation of multiclass image classification by support vector machines, IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1335-1343 https://doi.org/10.1109/TGRS.2004.827257
  9. Foody, G. M., M. B. McCulloch, and W. B. Yates, 1994. Crop classification from C-bandpolarimetric radar data, International Journal of Remote Sensing, 15(14): 2871-2885 https://doi.org/10.1080/01431169408954289
  10. Freeman, A. and S. L. Durden, 1998. A threecomponent scattering model for polarimetric SAR data, IEEE Transactions on Geoscience and Remote Sensing, 36(3): 963-973 https://doi.org/10.1109/36.673687
  11. Henderson, F. M. and A. J. Lewis, 1998. Principles & Applications of Imaging Radar, John Wiley & Sons, Inc., New York, NY, USA
  12. Journel, A. G., 2002. Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses, Mathematical Geology, 34(5): 573-596 https://doi.org/10.1023/A:1016047012594
  13. Krishnan, S., 2004. Combining diverse and partially redundant information in the earth sciences, Ph.D. Thesis, Stanford University
  14. Krogager, E., 1992. Decomposition of the Sinclair matrix into fundamental components with application to high resolution radar target imaging, Direct and Inverse Methods in Radar Polarimetry, Part 2, Boerner, W-M., ed., Kluwer, Dordrecht, The Netherlands, pp. 1459-1478
  15. Lee J.-S., M. R. Grunes, and R. Kwok, 1994. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution, International Journal of Remote Sensing, 15(11): 2299-2311 https://doi.org/10.1080/01431169408954244
  16. Lee J.-S., M. R. Grunes, L. T. Ainsworth, L. Du, D. L. Schuler, and S. R. Cloude, 1999. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier, IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2249-2258 https://doi.org/10.1109/36.789621
  17. Lee, J.-S., M. R. Grunes, and E. Pottier, 2001. Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR, IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2343-2351 https://doi.org/10.1109/36.964970
  18. Lemoine, G., F. de Grandi, and A. J. Sieber, 1994. Polarimetric contrast classification of agricultural fields using MAESTRO-1 AIRSAR data, International Journal of Remote Sensing, 15(14): 2851-2869 https://doi.org/10.1080/01431169408954288
  19. Melgani, F. and L. Bruzzone, 2004. Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1778-1790 https://doi.org/10.1109/TGRS.2004.831865
  20. Park, N.-W., 2004. Multi-source spatial data fusion with geostatistical uncertainty assessment: applications to landslide susceptibility analysis and land-cover classification, Ph. D. Thesis, Seoul National University
  21. Rignot, E. and M. R. Drinkwater, 1992. On the application of multifrequency polarimetric radar observations to see-ice classification, Proc. of IGARSS'94, Pasadena, CA, Aug. 8-12, pp. 2467-2469
  22. Smits, P. C., 2003. Geospatial data fusion, IGARSS 2003 Tutorial
  23. van Zyl, J. J., 1990. Unsupervised classification of scattering behavior using radar polarimetric data, IEEE Transactions on Geoscience and Remote Sensing, 27(1): 36-45 https://doi.org/10.1109/36.20273