English
新闻公告
More
化学进展 2023, Vol. 35 Issue (9): 1304-1312 DOI: 10.7536/PC230213 前一篇   后一篇

• 综述 •

聚合物水凝胶材料的透氧性能

金诗萍, 孙莹, 张雪勤*()   

  1. 东南大学化学化工学院 南京 211189
  • 收稿日期:2023-02-14 修回日期:2023-06-07 出版日期:2023-09-24 发布日期:2023-08-06
  • 作者简介:

    张雪勤 博士,东南大学化学化工学院副教授,硕士生导师。主要研究方向为高透氧聚合物水凝胶的设计及应用、聚合物光电功能材料的合成及光电子器件。主持和参与国家“863”高技术项目、国家自然科学基金、江苏省自然科学基金、江苏省产学研前瞻性联合项目等多项研究,已在国内外高水平科学杂志上发表论文三十余篇,获得授权发明专利十余项。

  • 基金资助:
    国家自然科学基金面上项目(22275035); 江苏省重点研发计划(No.BE 2022025-2)(BE 2022025-2)

Oxygen Permeability of Polymer Hydrogel Materials

Shiping Jin, Ying Sun, Xueqin Zhang()   

  1. College of Chemistry and Chemical Engineering, Southeast University,Nanjing 211189, China
  • Received:2023-02-14 Revised:2023-06-07 Online:2023-09-24 Published:2023-08-06
  • Contact: *e-mail: xqzhang@seu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(22275035); Jiangsu Key Research and Development Program(BE 2022025-2)

近年来,水凝胶在角膜接触镜和医用敷料等生物医学领域得到广泛应用。在这些领域中,透氧性能是衡量水凝胶材料应用性能的关键性指标。本文概述了传统聚合物水凝胶和硅水凝胶在角膜接触镜和医用敷料领域的应用,分别总结了传统水凝胶和硅水凝胶在结构设计及透氧机理方面的研究进展,重点分析了影响硅水凝胶透氧性能的各种因素。希望通过对近期相关研究工作的总结和梳理,能更加深入地理解水凝胶微观结构与透氧性能之间的关系,为调控材料性能和设计出满足需求的材料提供帮助。

In recent years, hydrogels have been widely used in biomedical fields such as contact lenses and medical dressings. In these fields, oxygen permeability is a key index to evaluate the application performance of hydrogel materials. In this paper, the application of traditional hydrogels and silicone hydrogels in the field of corneal contact lenses and medical dressings is sketched. The research progress of traditional hydrogels and silicone hydrogels in structural design and oxygen permeability mechanism is summarized, and various factors affecting the oxygen permeability of silicone hydrogels are analyzed emphatically. It is hoped that the relationship between hydrogel microstructure and oxygen permeability can be further understood by summarizing and sorting out the recent related research work, so as to provide help for the regulation of material properties and the design of materials to meet the requirements.

Contents

1 Introduction

2 Progress in oxygen permeability of traditional hydrogels

2.1 Research progress of traditional hydrogels as contact lenses

2.2 Oxygen permeability mechanism of hydrogel materials

3 Progress in oxygen permeability of silicone hydrogels

3.1 Research progress of silicone hydrogels as contact lenses

3.2 Oxygen permeability mechanism of silicone hydrogel materials

4 Conclusion and outlook

()
图1 水凝胶的Dk与平衡含水率之间的关系[31]
Fig.1 Relationship between Dk of hydrogel and water content[31]
表1 传统水凝胶和硅水凝胶研究工作总结
Table 1 Summary of the work of traditional hydrogels and silicone hydrogels
图2 含水率为37 wt%的HEMA基水凝胶和硅水凝胶的微观形貌模型[58]
Fig.2 Appearance of bulk material (grey) and open spaces (white) in the molecular structure of simulated pHEMA-based material (left) and Si-Hy material (right) at 37 wt% water content[58]. Copyright 2014, Elsevier
图3 Dk与硅含量和分布关系及硅水凝胶的可能形态[62]
Fig.3 The relationship between Dk and silicon content and distribution and the possible forms of silica hydrogels[62]. Copyright 2017, Elsevier
[1]
Li Q. Doctoral Dissertation of Hebei University, 2011.
(李倩. 河北大学博士论文, 2011.).
[2]
Wei Q B, Bai Z Y, Jiang Y. Applied Chemical Industry, 2013, 42(1): 62.
(魏清渤, 白志洋, 江源. 应用化工, 2013, 42(1): 62.).
[3]
Busatto C A, Labie H, Lapeyre V, Auzely-Velty R, Perro A, Casis N, Luna J, Estenoz D A, Ravaine V. J. Colloid Interface Sci., 2017, 493: 356.

doi: 10.1016/j.jcis.2017.01.029     URL    
[4]
Tang Q. Doctoral Dissertation of Donghua University, 2010.
(汤琦. 东华大学硕士论文, 2010.).
[5]
Hu X H, Gong X. J. Colloid Interface Sci., 2016, 470: 62.

doi: 10.1016/j.jcis.2016.02.037     URL    
[6]
Li X Y, Weng Y H, Kong X Y, Zhang B J, Li M, Diao K, Zhang Z L, Wang X H, Chen H. J. Mater. Sci. Mater. Med., 2012, 23(12): 2857.

doi: 10.1007/s10856-012-4757-5     URL    
[7]
Lin B F, Megley K A, Viswanathan N, Krogstad D V, Drews L B, Kade M J, Qian Y C, Tirrell M V. J. Mater. Chem., 2012, 22(37): 19447.

doi: 10.1039/c2jm31745a     URL    
[8]
Jiang Y Z, Hou Y J, Fang J J, Liu W J, Zhao Y H, Huang T L, Cui J L, Yang Y, Zhou Z H. Int. J. Polym. Anal. Charact., 2019, 24(2): 132.

doi: 10.1080/1023666X.2018.1558567     URL    
[9]
Chalmers R L, Wagner H, Mitchell G L, Lam D Y, Kinoshita B T, Jansen M E, Richdale K, Sorbara L, McMahon T T. Invest. Ophthalmol. Vis. Sci., 2011, 52(9): 6690.

doi: 10.1167/iovs.10-7018     URL    
[10]
Laura R S, Jose L, PÉrez-Canales, Juan J, PÉrez S, Sonia C S. Contact Lens and Anterior Eye, 2015, 38(2): 138.

doi: 10.1016/j.clae.2014.10.005     URL    
[11]
Zhang P P, Guo W B, Guo Z H, Ma Y, Gao L, Cong Z F, Zhao X J, Qiao L J, Pu X, Wang Z L. Adv. Mater., 2021, 33(31): 2101396.

doi: 10.1002/adma.v33.31     URL    
[12]
Lai W F, Rogach A L. ACS Appl. Mater. Interfaces, 2017, 9(13): 11309.

doi: 10.1021/acsami.6b16120     URL    
[13]
Mahendra C, John M P, Clayton J R. Biomaterials, 2007, 28(30): 4331.

pmid: 17659337
[14]
Compañ V, Andrio A, LÓpez-Alemany A, Riande E, Refojo M F. Biomaterials, 2002, 23(13): 2767.

pmid: 12059027
[15]
Wang Y L. Masteral Dissertation of Qingdao University of Science and Technology, 2014.
(王延龙. 青岛科技大学硕士论文, 2014.).
[16]
Boulart C, Connelly D P, Mowlem M C. Trac Trends Anal. Chem., 2010, 29(2): 186.

doi: 10.1016/j.trac.2009.12.001     URL    
[17]
Young G, Bowers R, Hall B, Port M. CLAO J, 1997, 23(4): 226.
[18]
Tao H W, Zhang X Q, Sun Y, Yang H, Lin B P. Colloid Polym. Sci., 2017, 295(1): 205.

doi: 10.1007/s00396-016-4001-9     URL    
[19]
Ni X M, Cui Y D, Cai L B. Polymer Materials Science and Engineering, 2004, (02): 191.
(黎新明, 崔英德, 蔡立彬. 高分子材料科学与工程, 2004, (02): 191.).
[20]
Chien H W, Kuo C J. J. Biomater. Sci. Polym. Ed., 2019, 30(12): 1050.

doi: 10.1080/09205063.2019.1620593     URL    
[21]
Hideki S, Go N, Haruki K, Kazuki D, Katsuhiro I, Eiji N. J. Appl. Polym. Sci, 2012, 124: 1316.

doi: 10.1002/app.v124.2     URL    
[22]
Liu M M, Zeng Z R, Fang H F. J. Chromatogr. A, 2005, 1076(1/2): 16.

doi: 10.1016/j.chroma.2005.04.025     URL    
[23]
Djt H, Moss N, Pomery P, Whittaker A. Polymer, 2000, 41(4): 1287.

doi: 10.1016/S0032-3861(99)00279-7     URL    
[24]
Wang Z G. Masteral Dissertation of Shenzhen University, 2018.
(王泽巩. 深圳大学硕士论文, 2018.).
[25]
Yang Y, Deng J, Cheng F M, Zhao D L, Tang K. Journal of Functional Materials, 2014, 45(S2): 129.
(杨漪, 邓军, 程方明, 赵大龙, 唐凯. 功能材料, 2014, 45(S2): 129.).
[26]
Ai Y Y, Masteral Dissertation of Shaanxi Normal University, 2013.
(艾媛媛. 陕西师范大学硕士论文, 2013.).
[27]
Yang F, Liu B, Luo Z K, Zhou L, Liang H Q, Li M. Chemical Research, 2015, 26(01): 90.

doi: 10.1021/ar00027a003     URL    
(杨菲, 刘波, 罗仲宽, 周莉, 梁汉秋, 李明. 化学研究, 2015, 26(01): 90.).
[28]
Ren X B, Yang L X, Zhang Y G. Coal Chem. Ind., 2015, 38(12): 22.
(任秀彬, 杨来侠, 张亚刚. 煤炭与化工, 2015, 38(12): 22.).
[29]
Wijmans J G, Baker R W. J. Membr. Sci., 1995, 107(1/2): 1.

doi: 10.1016/0376-7388(95)00102-I     URL    
[30]
Li X M. Doctoral Dissertation of Northwestern Polytechnical University, 2003.
(黎新明. 西北工业大学博士论文, 2003.).
[31]
Morgan P B, Efron N. Contact Lens Anterior Eye, 1998, 21(1): 2.

doi: 10.1016/S1367-0484(98)80016-7     URL    
[32]
Tan G X, Cui Y D, Yi G B, Zhou J H. CIESC Journal, 2005, (10): 2019.
(谭帼馨, 崔英德, 易国斌, 周家华. 化工学报, 2005, (10): 2019.).
[33]
Pedley D G, Tighe B J. Brit. Poly.J., 1979, 11(3): 130.
[34]
Jullok N, Martínez R, Wouters C, Luis P, Teresa Sanz M, Van der Bruggen B. Langmuir, 2013, 29(5): 1510.

doi: 10.1021/la3050253     pmid: 23323794
[35]
Xu W W, Chahine N, Sulchek T. Langmuir, 2011, 27(13): 8470.

doi: 10.1021/la201122e     URL    
[36]
Stern S A, Shah V M, Hardy B J. J. Polym. Sci. B Polym. Phys., 1987, 25(6): 1263.

doi: 10.1002/polb.09.v25:6     URL    
[37]
Berean K, Ou J Z, Nour M, Latham K, McSweeney C, Paull D, Halim A, Kentish S, Doherty C M, Hill A J, Kalantar-zadeh K. Sep. Purif. Technol., 2014, 122: 96.

doi: 10.1016/j.seppur.2013.11.006     URL    
[38]
Stapleton F, Stretton S, Papas E, Skotnitsky C, Sweeney D F. Ocular Surf., 2006, 4(1): 24.

doi: 10.1016/S1542-0124(12)70262-8     URL    
[39]
Chu ming xing, Miyajima K, Takahashi D, Arakawa T, Sano K, Sawada S I, Kudo H, Iwasaki Y, Akiyoshi K, Mochizuki M, Mitsubayashi K. Talanta, 2011, 83(3): 960.

doi: 10.1016/j.talanta.2010.10.055     URL    
[40]
Weeks A, Luensmann D, Boone A, Jones L, Sheardown H. J. Biomater. Appl., 2012, 27(4): 423.

doi: 10.1177/0885328211410999     URL    
[41]
Lai Y C, Baccei L J. J. Appl. Polym. Sci., 1991, 42(12): 3173.

doi: 10.1002/app.1991.070421210     URL    
[42]
Xiang J, Sun J G, Hong J X, Wang W T, Wei A J, Le Q H, Xu J J. Mater. Sci. Eng. C, 2015, 50: 274.

doi: 10.1016/j.msec.2015.01.089     URL    
[43]
Cai L B. Doctoral Dissertation of Northwestern Polytechnical University, 2006.
(蔡立彬. 西北工业大学博士论文, 2006.).
[44]
Zhao Z B, Xie H J, An S S, Jiang Y. J. Phys. Chem. B, 2014, 118(50): 14640.

doi: 10.1021/jp507682k     URL    
[45]
Carlborg C F, Haraldsson T, Öberg K, Malkoch M, van der Wijngaart W. Lab Chip, 2011, 11(18): 3136.

doi: 10.1039/c1lc20388f     pmid: 21804987
[46]
Nicolson P C, Vogt J. Biomaterials, 2001, 22(24): 3273.

doi: 10.1016/s0142-9612(01)00165-x     pmid: 11700799
[47]
Merkel T C, Bondar V I, Nagai K, Freeman B D, Pinnau I. J. Polym. Sci. B Polym. Phys., 2000, 38(3): 415.

doi: 10.1002/(ISSN)1099-0488     URL    
[48]
Lin C H, Yeh Y H, Lin W C, Yang M C. Colloids Surf. B Biointerfaces, 2014, 123: 986.

doi: 10.1016/j.colsurfb.2014.10.053     URL    
[49]
Fang J L, Yu X. Polymeric Mater. Sci. Engineering, 1998, 14(3): 15.
方江邻, 余学海. 高分子材料科学与工程, 1998, 14(3): 15.).
[50]
岩田淳一, 保木恒夫, 井川诚一郎, 阿瑟·巴克. CN 102323629B, 2015.
[51]
Liu D E, Dursch T J, Oh Y, Bregante D T, Chan S Y, Radke C J. Acta Biomater., 2015, 18: 112.

doi: 10.1016/j.actbio.2015.02.019     pmid: 25725471
[52]
Tran N P D, Yang M C. Polymers, 2020, 12(5): 1128.

doi: 10.3390/polym12051128     URL    
[53]
Shimizu T, Goda T, Minoura N, Takai M, Ishihara K. Biomaterials, 2010, 31(12): 3274.

doi: 10.1016/j.biomaterials.2010.01.026     URL    
[54]
Efron N. Contact Lens Practice. Amsterdam: Elsevier, 2018. 115.
[55]
Tang T, Li X W, Chen S T, Xu Q, Zhao H, Wang K, Li Y, Zhao M W. Eye Vis., 2023, 10(1): 6.

doi: 10.1186/s40662-022-00324-z    
[56]
Kraus O Z. Masteral Dissertation of Toronto University, 2012.
[57]
Liu Q L, Huang Y. J. Phys. Chem. B, 2006, 110(35): 17375.

doi: 10.1021/jp063174x     URL    
[58]
Pozuelo J, Compañ V, González-MÉijome J M, González M, Mollá S. J. Membr. Sci., 2014, 452: 62.

doi: 10.1016/j.memsci.2013.10.010     URL    
[59]
Erdodi G, Kennedy J P. J. Polym. Sci. A Polym. Chem., 2005, 43(20): 4965.

doi: 10.1002/pola.v43:20     URL    
[60]
Kwon Y, Song M, Hwang Y G, Chang S H, Hong W J. Curr. Appl. Phys., 2008, 8(3/4): 486.

doi: 10.1016/j.cap.2007.10.042     URL    
[61]
Wu B, Wiseman M E, Seitz M E, Tomić K, Heise A, Brougham D F, Litvinov V M. J. Membr. Sci., 2021, 621: 118970.

doi: 10.1016/j.memsci.2020.118970     URL    
[62]
Seitz M E, Wiseman M E, Hilker I, Loos J, Tian M W, Li J Y, Goswami M, Litvinov V M, Curtin S, Bulters M. Polymer, 2017, 118: 150.

doi: 10.1016/j.polymer.2017.04.061     URL    
[63]
Sugimoto H, Nishino G, Tsuzuki N, Daimatsu K, Inomata K, Nakanishi E. Colloid Polym. Sci., 2012, 290(2): 173.

doi: 10.1007/s00396-011-2538-1     URL    
[1] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[2] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[3] 刘炜珍, 郑嘉毅, 吴智诚, 刘章斌, 林璋. 表界面调控晶体变化微观机制探索与铬渣治理研究的结合[J]. 化学进展, 2017, 29(9): 1053-1061.
[4] 黎朝, 於麟, 郑震, 王新灵*. 具有规整结构和高强度的水凝胶的功能化[J]. 化学进展, 2017, 29(7): 706-719.
[5] 翟文中, 何玉凤, 王斌, 熊玉兵, 宋鹏飞, 王荣民. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136.
[6] 刘旭, 吴俊涛, 霍江贝, 孟晓宇, 崔立山, 周琼. 质子交换膜的传输通道微观结构对燃料电池性能的影响[J]. 化学进展, 2015, 27(4): 395-403.
[7] 程新峰, 金勇, 漆锐, 樊宝珠, 李汉平. 刺激响应降解型聚合物水凝胶[J]. 化学进展, 2015, 27(12): 1784-1798.
[8] 曲爱兰,文秀芳,丕皮辉,程江,杨卓如. 超疏水涂膜的研究进展*[J]. 化学进展, 2006, 18(11): 1434-1439.
[9] 封伟,冯奕钰. 有机光伏器件激活层的微结构有序性与电荷输运*[J]. 化学进展, 2006, 18(0203): 182-188.
阅读次数
全文


摘要

聚合物水凝胶材料的透氧性能