English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 458-474 DOI: 10.7536/PC220822 前一篇   后一篇

• 综述 •

MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理

兰明岩, 张秀武, 楚弘宇, 王崇臣*()   

  1. 北京建筑大学建筑结构与环境修复功能材料北京市重点实验室 北京 100044
  • 收稿日期:2022-08-26 修回日期:2023-01-08 出版日期:2023-03-24 发布日期:2023-02-15
  • 作者简介:

    王崇臣 教授、博士、博士生导师,建筑结构与环境修复功能材料北京市重点实验室主任、中国材料研究学会副秘书长。研究领域为环境功能材料。入选北京市百千万人才、北京市高创计划百千万领军人才、长城学者和北京市高校青年教学名师。主持国家自然科学基金、北京自然科学基金、北京社科基金等项目10余项。发表代表性论文100余篇,其中26篇ESI高被引论文和7篇热点论文。担任Environmental Functional MaterialsChinese Chemical LettersChinese Journal of Structural Chemistry、《材料导报》、《工业水处理》、《环境化学》、《北京建筑大学学报》等期刊副主编、编委。入选2022年科睿唯安全球高被引科学家。

  • 基金资助:
    国家自然科学基金项目(22176012); 北京市自然科学基金项目(8202016)

MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms

Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen()   

  1. Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
  • Received:2022-08-26 Revised:2023-01-08 Online:2023-03-24 Published:2023-02-15
  • Contact: *e-mail: wangchongchen@bucea.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22176012); Beijing Natural Science Foundation(8202016)

MIL-101(Fe)是一种典型的铁基金属有机框架材料(Fe-MOFs),具有结构灵活、比表面积大、孔隙率大、孔径可调节等优点。近年来,MIL-101(Fe)及其复合物在水污染修复领域得到了广泛的研究,特别是在还原六价铬(Cr(Ⅵ))和高级氧化去除水中有机污染物方面展现出良好的应用前景。通过功能化修饰以及与特定功能材料复合等方法可进一步改善MIL-101(Fe)的水稳定性、增强其光吸收特性和促进载流子分离效率等。本文重点综述了MIL-101(Fe)及其复合物的制备策略及其作为异相催化材料实现光催化还原Cr(Ⅵ)和高级氧化(光催化、活化H2O2和活化过硫酸盐)去除水中有机污染物的研究进展,并对MIL-101(Fe)及其复合物今后的发展予以展望。

MIL-101(Fe) is a typical Fe-based metal-organic framework (Fe-MOF), which demonstrates the advantages of flexible structure, large specific surface area, large porosity, and adjustable pore size. In recent years, MIL-101(Fe) and its composites have been extensively studied in the field of water pollution remediation, especially in the hexavalent chromium (Cr(Ⅵ)) reduction and advanced oxidation processes for removing organic pollutants in water. The water stability, light absorption activity and the carrier separation efficiency can be significantly improved by functional modification with specific functional materials. In this review, the preparation strategies of MIL-101(Fe) and its composites, as well as their application as heterogeneous catalysts for photocatalysis, H2O2 activation, and persulfate activation were introduced. The future development of MIL-101(Fe) and its composites as catalysts for water purification is prospected.

Contents

1 Introduction

2 Preparation of MIL-101(Fe) and its composites

2.1 MIL-101(Fe)

2.2 MIL-101(Fe) composites

3 MIL-101(Fe) and its composites for reduction of Cr(Ⅵ)

4 Advanced oxidative degradation of organic pollutants in wastewater by MIL-101(Fe) and their composites

4.1 Photocatalysis

4.2 Activation of H2O2

4.3 Activation of persulfate

5 Water stability and biotoxicity of MIL-101(Fe)

6 Conclusions and prospective

()
图1 近八年发表的MIL-101(Fe)相关文章的数量(来源:Web of Science,日期:2023年1月6日,关键词:MIL-101(Fe)和catalysis)
Fig. 1 Number of publications of MIL-101(Fe) during the past eight years (source: Web of Science, date: 6th January 2023, keywords: MIL-101(Fe) and catalysis)
图2 (a) 溶剂热法[18];(b) 微波辅助法[21];(c) 电化学法[23]和(d) 室温搅拌法[24]合成的MIL-101(Fe)形貌图;(e) 原位合成法合成的MIL-101(Fe)/g-C3N4复合材料[27];(f) 一步合成法合成的MIL-101(Fe)/CuS复合材料[30]和(g) 室温浸渍法合成的Ag/AgCl/MIL-101(Fe)复合材料的形貌图[32]
Fig. 2 The morphologies of MIL-101(Fe) synthesized via (a) solvothermal method[18]; (b) microwave-assisted method[21]; (c) electrochemical method[23] and (d) room temperature method; the morphologies of (e) MIL-101(Fe)/g-C3N4 composite[27]; (f) MIL-101(Fe)/CuS composite[30] and (g) Ag/AgCl/MIL-101(Fe) composite[32] synthesized via in-situ synthesis, one-step synthesis and room temperature impregnation, respectively
表1 MIL-101(Fe)及其复合物用于光催化还原Cr(Ⅵ)
Table 1 MIL-101(Fe) and its composites for photocatalytic Cr(Ⅵ) reduction
图3 (a) 不同材料光催化还原Cr(Ⅵ)的性能图[44];(b) 在草酸存在下MA光催化还原Cr(Ⅵ)的机理图[42];(c) g-C3N4/NH2-MIL-101(Fe)光催化还原Cr(Ⅵ)的机理图[45];(d) Ag/AgCl/MIL-101(Fe)光催化还原Cr(Ⅵ)的机理图[32]
Fig. 3 (a) Performances of photocatalytic Cr(Ⅵ) reduction over different materials[44]; schematic illustration of photocatalytic Cr(Ⅵ) reduction mechanism of (b) MA[42]; (c) g-C3N4/NH2-MIL-101(Fe)[45]; (d) Ag/AgCl/MIL-101(Fe)[32]
图4 (a) 可见光照射下MIL-101(Fe)中光生电子-空穴对的分离和转移示意图[59];(b) m-MIL-101-1.0的制备过程示意图[64];(c) m-MIL-101-1.0中e-和h+的转移过程和光催化机理图[64];(d) MIL-101(Fe)/WO3光催化降解TCH机理图[74];(e) TiO2/MIL-101(Fe)的透射电子显微镜图[63];(f) CFs/TiO2/MIL-101(Fe)的吸附及光催化示意图[63]
Fig. 4 (a) Schematic diagram of the separation and transfer of photo-generated electron-hole pairs in MIL-101(Fe) under visible light irradiation[59]; (b) schematic diagram of the preparation process of m-MIL-101-1.0[64]; (c) schematic diagram of the transfer process and photocatalytic mechanism of e- and h+ in m-MIL-101-1.0[64]; (d) proposed charge separation process and catalytic mechanism for TCH photodegradation over MIL-101(Fe)/WO3 hybrid system[74]; (e) TEM image of TiO2/MIL-101(Fe)[63]; (f) schematic diagram of adsorption and photocatalytic mechanism of CFs/TiO2/MIL-101(Fe)[63]
表2 MIL-101(Fe)及其复合物用于光催化降解有机污染物
Table 2 MIL-101(Fe) and its composites for photocatalytic organic pollutants degradation
Catalyst/dosage (g·L-1) Polluant/Volume (mL)/
Concentration (mg·L-1)/pH
Light source Reaction time (min) Degradation efficiency (%) ref
MIL-101(Fe)/0.5 tetracycline/100/50/- 300 W Xe lamp (λ≥ 420 nm) 180 96.6 59
V2O5/NH2-MIL-101(Fe)-10/0.5 tetracycline/100/-/- ultraviolet-visible light from a 300 W xenon lamp 120 88.3 60
NH2-MIL-101(Fe)/Cu2O-2/1 rhodamine B/100/4.8/- 300 W Xe lamp (λ≥ 420 nm) 90 92 61
Electrospun graphene oxide/MIL-101(Fe)/poly (acrylonitrile-co-maleic
acid) nanofiber/2
rhodamine B/20/-/- ultraviolet lamp (16 W) 20 93.7 62
carbon fibers/TiO2/MIL-101(Fe)/2 17β-estradiol/100/3/-;tetracycline/100/20/- visible light 60 87.4 (17β-estradiol)/94.2 (tetracycline) 63
m-MIL-101-1.0/0.5 tetracycline/20/20/- 300 W Xe lamp (λ≥ 420 nm) 60 85.41 64
Magnetic MIL-101(Fe)/TiO2/1 tetracycline/50/20/7 solar light 10 92.76 65
5-Bi2MoO6/MIL-101(Fe)/0.3 rhodamine B/100/15/6.5 blue light LED 83.2 90 66
MIL-101(Fe)/gC3N4/0.5 bisphenol A/40/10/6.8 150 W halogen cold light source (λ≥ 420 nm) 240 94.8 27
1%Ag/AgCl/MIL-101(Fe/)1 phenol/50/10/6 300 W Xe lamp (λ≥ 420 nm) 30 70 32
g-C3N4/NH2-MIL-101(Fe)/1 2,6-dichlorophen/30/10/-
2,4,5-trichlorophenol/30/10/-
300 W Xe-lamp 180 98.7 (2,6-
dichlorophen)/
97.3 (2,4,5-
trichlorophenol)
67
Cu2O/Fe3O4/MIL-101(Fe)/0.5 ciprofloxacin//20/7 500 W Xe lamp 105 99.2 43
NCQDs/MIL-101(Fe)/0.5 tetracycline/100/10/- 500 W Xe lamp (λ≥ 420 nm) 180 100 68
g-C3N4@NiO/Ni-3@MIL-101/0.01 ibuprofen/30/30/- 500W Xenon (λ>400 nm) 120 95.6 69
Tm@Yb@Y/NMF/0.03 tetracycline/levofloxacin/ rhodamine B/60/20/- 500 W Xe lamp 50 47 (tetracycline)/
70 (levofloxacin)/
77 (rhodamine B)
70
NH2-MIL-101(Fe)/Ti3C2Tx/1 phenol/chlorophenol/100/23.5/- 300 W Xe lamp (λ≥ 420 nm) 60 99.36 (phenol)/
99.83 (chlorophenol)
71
表3 MIL-101(Fe)及其复合物用于活化H2O2降解有机污染物
Table 3 MIL-101(Fe) and its composites for organic pollutants degradation via activation of H2O2
Catalyst/dosage (g·L-1) Polluant/Volume (mL)/ Concentration (mg·L-1)/pH H2O2 dosage Light source Reaction time (min) Degradation efficiency (%) ref
MIL-101(Fe)/0.1 phenol/150/50/4 15 mM in dark 30 62 83
Fe3O4/MIL-101(Fe)/0.5 rhodamine B/100/10/7 20 mM in dark 30 100 85
NH2-MIL-101(Fe)/0.1 rhodamine B/50/0.025 mM/7.22 0.5 mL in dark 4 100 86
GA/MIL-101(Fe)/0.1 phenol/50/0.1 mM/5 6 mM in dark 40 99 84
MIL-101(Fe,Cu)/0.1 ciprofloxacin/100/20/7 3 mM in dark 30 100 87
NH2-MIL-101(Fe) -EPU/0.5 tetrabromobisphenol A/20/1.84 mM/3 165 mM light-emitting diodes (λ≥ 400 nm) 120 120 88
MIL-101(Fe,Co)/0.2 ciprofloxacin/100/20/5 5 mM in dark 30 97.8 89
NH2-MIL-101(Fe)/0.2 bisphenol A/50/50/6 10 mM in dark 30 100 24
MIL-101 (Fe)/PANI/Pd/0.05 methylene Blue/-/25/7 1 M - 34 92 90
MoS2@NH2-MIL-101(Fe)/0.2 rhodamine B/50/50/-
bisphenol A/50/20/-
1.76 mM 300 W Xe lamp 10 97.4 (RhB)
99.9 (BPA)
91
Fe/Ce-MIL-101/0.3 norfloxacin/-/10/7 20 mM in dark 60 94.8 92
TiO2@17%NH2-MIL-101(Fe)/1 methylene Blue/100/50/- - 300 W Xe lamp (λ≥ 420 nm) 30 96 93
CNT@MIL-101(Fe)/0.5 ciprofloxacin/100/3.02 μM/3 165 mM white light LEDs, 360-830 nm 45 90 94
GO@MIL-101(Fe)/0.5 tris(2-chloroethyl) phosphate/-/3.51μM/3 165 mM multiple wavelength LEDs 30 95 95
AFG@30MIL-101(Fe)/0.4 diazinon/50/30/9
atrazine/50/30/2
1.5 mL high-pressure mercury-
vapor lamp (400 W and λ = 546.8 nm)
120 100 (diazinon)
81 (atrazine)
96
MIL/Co/(3%)GO/0.2 direct Red 23/-/100/3
reactive Red 198/-/100/3
50 μL 100 W LED projector 70 99.93
(Direct Red 23)
99.65
(Reactive Red 198)
97
MIL-101(Fe)@Zn/Co-ZIFs/0.2 rhodamine B/50/100/5 90 mM 350 W Xe lamp (λ≥ 420 nm) 180 98 98
MIL-101(Fe)/Bi2WO6/Fe(Ⅲ)/
0.5
methylene Blue/100/20/- 500 μL 200 W incandescent lamp 75 86.7 99
MIL-101(Fe)-NH2@Al2O3/0.3 norfloxacin/50/10/- 15 μL 350 W Xe lamp 97.3 100 80
图5 (a) GA/MIL-101(Fe)的制备策略示意图[84];(b) Fe-BDC-NH2/H2O2系统催化降解BPA的机理图[24];(c) CUMSs/MIL-101(Fe, Cu)/H2O2系统催化降解CIP的机理图[87];(d) MIL-101(Fe)/H2O2/vis系统催化降解TC—HCl的机理图[103]
Fig. 5 (a) Schematic diagram showing the design strategy of GA/MIL-101(Fe)[84]; (b) schematic diagram of the proposed mechanisms involved for BPA degradation in Fe-BDC-NH2/H2O2 system[84]; (c) schematic diagrams of the proposed mechanism involved in CIP degradation by CUMSs/MIL-101(Fe, Cu)/H2 O 2 [87]; (d) illustration of the proposed reaction mechanism for TC-HCl removal in MIL-101(Fe)/H2O2/visible light system[103]
表4 MIL-101(Fe)及其复合物用于活化过硫酸盐降解有机污染物
Table 4 MIL-101(Fe) and its composites for organic pollutants degradation via activation of persulfate
Catalyst/Dosage (g·L-1) Polluant/Volume (mL)/ Concentration (mg·L-1)/pH PS dosage Light source Reaction time (min) Degradation efficiency (%) ref
MIL-101(Fe)/0.625 acid orange 7/25/80/6.16 15 mM in dark 120 95 108
Fe3O4@MIL-101/1 acid orange 7/10/25/3.58 25 mM in dark 60 98.1 109
Quinone-modified NH2-MIL-101(Fe)/0.2 bisphenol A/25/60/5.76 10 mM in dark 120 97.7 110
6 wt% Co-MIL-101(Fe)/0.2
6 wt% Cu-MIL-101(Fe)/0.2
acid orange 7/100/0.1 mM/- 8 mM in dark 180 92 (6 wt% Co-MIL-101(Fe))
98 (6 wt% Co-MIL-101(Fe))
17
g-C3N4/MIL-101(Fe)/0.5 bisphenol A/-/10/- 1 mM 350 W Xe lamp (λ≥ 400 nm) 60 98 111
MIL-101(Fe) via vacuum thermal treatment/0.1 X-3B/100/100/- 15 mM in dark 180 95.7 112
MIL-101(Fe)/0.5 tris(2-chloroethyl)
phosphate/20/3.51 μM/-
500 mg·L-1 light-emitting diodes (LEDs) with emission peaks 180 > 90 113
MIL-101(Fe)/TiO2/1 tetracycline/-/80/7 1 g·L-1 500 W Xe lamp 30 93.02 114
MIL-101(Fe)-NH2/1 amaranth/200/50/7 200 mg·L-1 150 W visible light 30 100 115
NH2-MIL-101(Fe)/0.02 bisphenol F/200/20/5 1 mM in dark 120 100 116
MIL-101(Fe)/1 methylene Blue/20/10/7 500 mg·L-1 in dark 25 > 90 117
N,S:CQD/MIL-101(Fe)/0.4 bisphenol A/100/20/- 3 mM 350 W Xe lamp (λ≥ 400 nm) 60 100 118
CuS-modified MIL-101(Fe)/0.1 E. coli/100/ 107.5 cfu·
mL-1/6.5
50 μM white LED lamps (11,000 Lux, 400~700 nm) 40 100 30
TiO2@MIL-101(Fe)/1.052 nitrobenzene/28.5/800 μM/- 1.6 mM Xe lamp (λ≥ 420 nm) 240 66.53 31
RGO/MIL-101(Fe)/0.5 trichlorophenol/-/20/3 20 mM in dark 180 92 119
MIL-101(Fe)/0.1 orange G/50/15/3 0.05 mM in dark 40 74 120
MIL-101(Fe)/g-C3N4/0.08 tetracycline hydrochloride/
50/-/3.5
0.85 mM 30-W LED lamp (λ=410~760 nm) 40 99 121
NH2-MIL-101(Fe)-ferrocene/0.2 bisphenol A/25/60/5.76 10 mM in dark 40 100 122
NH2-MIL-101(FeCo)-2/0.005 orange G/99/0.2 nM/7 2 mM in dark 45 100 123
M/Z2/0.01 2-chlorophenol/100/100/9 300 mg·L-1 in dark 10 90.3 124
图6 (a) MIL-101(Fe)活化PS催化降解AO7的机理图[108];(b) 分别使用HBC、HAC、OA和CA(Fe,深橙色;C,黑色;O,红色;H,白色)调控,合成缺陷MIL-101(Fe)催化剂的制备策略[128];(c) RGO/MIL-101(Fe)活化PS的反应机理图[119];(d) N, S: CQDs /MIL-101(Fe)/PS/vis体系中的光催化降解机理图[118]
Fig. 6 (a) The possible elimination mechanism of AO7 by MIL-101(Fe)[108]; (b) scheme of the strategy for the syntheses of defective MIL-101(Fe) by modulating synthesis using HBC, HAC, OA, and CA, respectively (Fe, dark orange; C, black; O, red; H, white)[128]; (c) schematic diagram of the reaction mechanism of the PS activation by RGO/MIL101(Fe)[119]; (d) possible photocatalytic degradation mechanism in the N, S: CQD/MIL-101(Fe)/PS/vis system[118]
[1]
Wang C C, Yi X H, Wang P. Appl. Catal. B Environ., 2019, 247: 24.

doi: 10.1016/j.apcatb.2019.01.091     URL    
[2]
Zhou H C, Kitagawa S. Chem. Soc. Rev., 2014, 43(16): 5415.

doi: 10.1039/C4CS90059F     URL    
[3]
Ren X Y, Wang C C, Li Y, Wang P, Gao S J. J. Hazard. Mater., 2023, 445: 130552.

doi: 10.1016/j.jhazmat.2022.130552     URL    
[4]
Zhang Y M, Yuan S, Day G, Wang X, Yang X Y, Zhou H C. Coord. Chem. Rev., 2018, 354: 28.

doi: 10.1016/j.ccr.2017.06.007     URL    
[5]
Qian Y T, Zhang F F, Pang H. Adv. Funct. Mater., 2021, 31(37): 2104231.
[6]
Chu H Y, Wang T Y, Wang C C. Progress in Chemistry, 2022, 34 (12): 2700.
(楚宏宇, 王天宇, 王崇臣. 化学进展, 2022, 34 (12): 2700.).
[7]
Li X Y, Zhang H C, Wang P Y, Hou J, Lu J, Easton C D, Zhang X W, Hill M R, Thornton A W, Liu J Z. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8    
[8]
Chen X R, Tong R L, Shi Z Q, Yang B, Liu H, Ding S P, Wang X, Lei Q F, Wu J, Fang W J. ACS Appl. Mater. Interfaces, 2018, 10(3): 2328.

doi: 10.1021/acsami.7b16522     URL    
[9]
Jie B R, Lin H D, Zhai Y X, Ye J Y, Zhang D Y, Xie Y F, Zhang X D, Yang Y Q. Chem. Eng. J., 2023, 454: 139931.
[10]
Hu Y H, Zhang L. Adv. Mater., 2010, 22(20): E117.

doi: 10.1002/adma.200902096     URL    
[11]
Yaghi O M, Li H L. J. Am. Chem. Soc., 1995, 117(41): 10401.

doi: 10.1021/ja00146a033     URL    
[12]
FÉrey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, SurblÉ S, Margiolaki I. Science, 2005, 309(5743): 2040.

doi: 10.1126/science.1116275     URL    
[13]
Biswas S, Couck S, Grzywa M, Denayer J F M, Volkmer D, Van Der Voort P. Eur. J. Inorg. Chem., 2012, 2012(15): 2481.

doi: 10.1002/ejic.v2012.15     URL    
[14]
Taghizadeh M, Tahami S. Rev. Chem. Eng., 2022,DOI:10.1015/revce-2021-0050.

doi: 10.1015/revce-2021-0050    
[15]
Ravi Y, Prasanthi I, Behera S, Datta K K R. ACS Appl. Nano Mater., 2022, 5(4): 5857.

doi: 10.1021/acsanm.2c01083     URL    
[16]
Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal., 2014, 4(12): 4254.

doi: 10.1021/cs501169t     URL    
[17]
Duan M J, Guan Z Y, Ma Y W, Wan J Q, Wang Y, Qu Y F. Chem. Pap., 2018, 72(1): 235.

doi: 10.1007/s11696-017-0276-7     URL    
[18]
Li Z C, Liu X M, Jin W, Hu Q S, Zhao Y P. J. Colloid Interface Sci., 2019, 554: 692.

doi: 10.1016/j.jcis.2019.07.046     URL    
[19]
Yang M, Tang J, Ma Q Q, Zheng N N, Tan L. J. Porous Mater., 2015, 22(5): 1345.

doi: 10.1007/s10934-015-0011-0     URL    
[20]
Wang F X, Wang C C. Research of Environmental Sciences, 2021, 34(12): 2924.
(王茀学, 王崇臣. 环境科学研究, 2021, 34(12): 2924.).
[21]
Taylor-Pashow K M L, Della Rocca J, Xie Z G, Tran S, Lin W B. J. Am. Chem. Soc., 2009, 131(40): 14261.

doi: 10.1021/ja906198y     pmid: 19807179
[22]
Dong Y N, Hu T D, Pudukudy M, Su H Y, Jiang L H, Shan S Y, Jia Q M. Mater. Chem. Phys., 2020, 251: 123060.

doi: 10.1016/j.matchemphys.2020.123060     URL    
[23]
Wu W B, Decker G E, Weaver A E, Arnoff A I, Bloch E D, Rosenthal J. ACS Cent. Sci., 2021, 7(8): 1427.

doi: 10.1021/acscentsci.1c00686     URL    
[24]
Huang P P, Yao L L, Chang Q, Sha Y H, Jiang G D, Zhang S H, Li Z. Chemosphere, 2022, 291: 133026.

doi: 10.1016/j.chemosphere.2021.133026     URL    
[25]
Zhao X D, Zhang C W, Liu B S, Zhao H F, Gao X L, Wang Y Y, Zhang Y Z, Liu D H, Wang C C. Resour. Conserv. Recycl., 2023, 188: 106647.

doi: 10.1016/j.resconrec.2022.106647     URL    
[26]
Zhang L, Wang C Y, Wang C C. Resour. Conserv. Recycl., 2023, 190: 106805.

doi: 10.1016/j.resconrec.2022.106805     URL    
[27]
Zhao F P, Liu Y P, Ben Hammouda S, Doshi B, Guijarro N, Min X B, Tang C J, Sillanpää M, Sivula K, Wang S B. Appl. Catal. B Environ., 2020, 272: 119033.

doi: 10.1016/j.apcatb.2020.119033     URL    
[28]
Huo Q, Liu G Q, Sun H H, Fu Y F, Ning Y, Zhang B Y, Zhang X B, Gao J, Miao J R, Zhang X L, Liu S Y. Chem. Eng. J., 2021, 422: 130036.

doi: 10.1016/j.cej.2021.130036     URL    
[29]
Vu T A, Le G H, Dao C D, Dang L Q, Nguyen K T, Dang P T, Tran H T K, Duong Q T, Nguyen T V, Lee G D. RSC Adv., 2014, 4(78): 41185.

doi: 10.1039/C4RA06522K     URL    
[30]
Jiang Y N, Wang Z J, Huang J B, Yan F, Du Y, He C S, Liu Y, Yao G, Lai B. Chem. Eng. J., 2022, 439: 135788.

doi: 10.1016/j.cej.2022.135788     URL    
[31]
Xu J J, Wang S Y, Yan C Y, Adeel Sharif H M, Yang B. Chemosphere, 2022, 288: 132666.

doi: 10.1016/j.chemosphere.2021.132666     URL    
[32]
Gong J Q, Zhang W W, Sen T, Yu Y C, Liu Y C, Zhang J L, Wang L Z. ACS Appl. Nano Mater., 2021, 4(5): 4513.

doi: 10.1021/acsanm.1c00119     URL    
[33]
O’Brien T J, Ceryak S, Patierno S R. Mutat. Res., Fundam. Mol. Mech. Mutagen., 2003, 533(1/2): 3.

doi: 10.1016/j.mrfmmm.2003.09.006     URL    
[34]
Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Appl. Catal. B Environ., 2016, 193: 198.

doi: 10.1016/j.apcatb.2016.04.030     URL    
[35]
Al-Fartusie F S, Mohssan S N. Indian J. Adv. Chem. Sci., 2017, 5(3): 127.
[36]
Wang C C, Ren X Y, Wang P, Chang C. Chemosphere, 2022, 303: 134949.
[37]
Wang F X, Yi X H, Wang C C, Deng J G. Chinese Journal of Catalysis., 2017, 38(12): 2141.

doi: 10.1016/S1872-2067(17)62947-4     URL    
(王茀学, 衣晓虹, 王崇臣, 邓积光. 催化学报, 2017, 38(12): 2141.).
[38]
Li Y H, Yi X H, Li Y X, Wang C C, Wang P, Zhao C, Zheng W W. Environ. Res., 2021, 201: 111596.

doi: 10.1016/j.envres.2021.111596     URL    
[39]
Wang J W, Qiu F G, Wang P, Ge C J, Wang C C. J. Clean. Prod., 2021, 279: 123408.

doi: 10.1016/j.jclepro.2020.123408     URL    
[40]
Zhou Y C, Wang P, Fu H F, Zhao C, Wang C C. Chin. Chem. Lett., 2020, 31(10): 2645.

doi: 10.1016/j.cclet.2020.02.048     URL    
[41]
Du X D, Yi X H, Wang P, Zheng W W, Deng J G, Wang C C. Chem. Eng. J., 2019, 356: 393.

doi: 10.1016/j.cej.2018.09.084     URL    
[42]
Zhao Q, Yi X H, Wang C C, Wang P, Zheng W W. Chem. Eng. J., 2022, 429: 132497.

doi: 10.1016/j.cej.2021.132497     URL    
[43]
Doan V D, Huynh B A, Le Pham H A, Vasseghian Y, Le V T. Environ. Res., 2021, 201: 111593.

doi: 10.1016/j.envres.2021.111593     URL    
[44]
Shi L, Wang T, Zhang H B, Chang K, Meng X G, Liu H M, Ye J H. Adv. Sci., 2015, 2(3): 1500006.
[45]
Liu B K, Wu Y J, Han X L, Lv J H, Zhang J T, Shi H Z. J. Mater. Sci. Mater. Electron., 2018, 29(20): 17591.

doi: 10.1007/s10854-018-9862-x    
[46]
Liu J, Hao D D, Sun H W, Li Y, Han J L, Fu B, Zhou J C. Ind. Eng. Chem. Res., 2021, 60(33): 12220.

doi: 10.1021/acs.iecr.1c01777     URL    
[47]
Sadeghian S, Pourfakhar H, Baghdadi M, Aminzadeh B. Chemosphere, 2021, 268: 129365.

doi: 10.1016/j.chemosphere.2020.129365     URL    
[48]
Pattappan D, Kavya K V, Vargheese S, Kumar R T R, Haldorai Y. Chemosphere, 2022, 286: 131875.

doi: 10.1016/j.chemosphere.2021.131875     URL    
[49]
Jiang J M, Huang F H, Bai R, Zhang J L, Wang L. J. Environ. Chem. Eng., 2022, 10(3): 107908.
[50]
Fu Y H, Sun D R, Chen Y J, Huang R K, Ding Z X, Fu X Z, Li Z H. Angew. Chem. Int. Ed., 2012, 51(14): 3364.

doi: 10.1002/anie.v51.14     URL    
[51]
Ai L H, Zhang C H, Li L L, Jiang J. Appl. Catal. B Environ., 2014, 148/149: 191.
[52]
Li Y X, Wang X, Wang C C, Fu H F, Liu Y B, Wang P, Zhao C. J. Hazard. Mater., 2020, 399: 123085.

doi: 10.1016/j.jhazmat.2020.123085     URL    
[53]
Li Y X, Fu H F, Wang P, Zhao C, Liu W, Wang C C. Environ. Pollut., 2020, 256: 113417.

doi: 10.1016/j.envpol.2019.113417     URL    
[54]
Liu X L, Ma R, Zhuang L, Hu B W, Chen J R, Liu X Y, Wang X K. Crit. Rev. Environ. Sci. Technol., 2021, 51(8): 751.

doi: 10.1080/10643389.2020.1734433     URL    
[55]
Wen J Q, Xie J, Chen X B, Li X. Appl. Surf. Sci., 2017, 391: 72.

doi: 10.1016/j.apsusc.2016.07.030     URL    
[56]
Li X Y, Pi Y H, Wu L Q, Xia Q B, Wu J L, Li Z, Xiao J. Appl. Catal. B Environ., 2017, 202: 653.

doi: 10.1016/j.apcatb.2016.09.073     URL    
[57]
Ndolomingo M J, Bingwa N, Meijboom R. J. Mater. Sci., 2020, 55(15): 6195.

doi: 10.1007/s10853-020-04415-x    
[58]
Tzou Y M, Chen K Y, Cheng C Y, Lee W Z, Teah H Y, Liu Y T. Environ. Pollut., 2020, 261: 114024.
[59]
Wang D B, Jia F Y, Wang H, Chen F, Fang Y, Dong W B, Zeng G M, Li X M, Yang Q, Yuan X Z. J. Colloid Interface Sci., 2018, 519: 273.

doi: 10.1016/j.jcis.2018.02.067     URL    
[60]
Huang C, Wang J, Li M J, Lei X F, Wu Q. Solid State Sci., 2021, 117: 106611.

doi: 10.1016/j.solidstatesciences.2021.106611     URL    
[61]
Geng J G, Ma J L, Li F, Ma S Q, Zhang D, Ning X F. Ceram. Int., 2021, 47(10): 13291.

doi: 10.1016/j.ceramint.2020.09.239     URL    
[62]
Huang Z J, Lai Z, Zhu D Y, Wang H Y, Zhao C X, Ruan G H, Du F Y. J. Colloid Interface Sci., 2021, 597: 196.

doi: 10.1016/j.jcis.2021.04.020     URL    
[63]
Zhang Y, Xiong M Y, Sun A R, Shi Z, Zhu B, Macharia D K, Li F, Chen Z G, Liu J S, Zhang L S. J. Clean. Prod., 2021, 290: 125782.
[64]
Xie L X, Zhang T S, Wang X Y, Zhu W X, Liu Z L, Liu M S, Wang J, Zhang L, Du T, Yang C Y, Zhu M Q, Wang J L. J. Clean. Prod., 2022, 359: 131808.

doi: 10.1016/j.jclepro.2022.131808     URL    
[65]
He L, Dong Y N, Zheng Y E, Jia Q M, Shan S Y, Zhang Y Q. J. Hazard. Mater., 2019, 361: 85.

doi: 10.1016/j.jhazmat.2018.08.079     URL    
[66]
Hajiali M, Farhadian M, Tangestaninejad S, Khosravi M. Adv. Powder Technol., 2022, 33(5): 103546.

doi: 10.1016/j.apt.2022.103546     URL    
[67]
Su S Y, Xing Z P, Zhang S Y, Du M, Wang Y, Li Z Z, Chen P, Zhu Q, Zhou W. Appl. Surf. Sci., 2021, 537: 147890.

doi: 10.1016/j.apsusc.2020.147890     URL    
[68]
Xie Y H, Liu C R, Li D J, Liu Y. Appl. Surf. Sci., 2022, 592: 153312.

doi: 10.1016/j.apsusc.2022.153312     URL    
[69]
Cong Y Q, Li Y N, Wang X R, Wei X, Che L, Lv S W. Sep. Purif. Technol., 2022, 297: 121531.

doi: 10.1016/j.seppur.2022.121531     URL    
[70]
Ren H H, Bai R, Huang F H, Zhang J L, Wang L. Cryst. Growth. Des., 2022, 22(8): 4864.

doi: 10.1021/acs.cgd.2c00346     URL    
[71]
Hu C Y, Jiang Z W, Yang C P, Wang X Y, Wang X, Zhen S J, Wang D M, Zhan L, Huang C Z, Li Y F. Chem. A Eur. J., 2022, 28(54): e202201437.
[72]
Li Y H, Wang P, Wang C C, Liu Y B. Chin. J. Inorg. Chem., 2022, 38(12): 2342.
(李渝航, 王鹏, 王崇臣, 刘艳彪. 无机化学学报, 2022, 38(12): 2342.).
[73]
Shi K X, Qiu F G, Wang J W, Wang P, Li H Y, Wang C C. Sep. Purif. Technol., 2023, 309: 122991.

doi: 10.1016/j.seppur.2022.122991     URL    
[74]
Yang H, Zhao Z C, Yang Y P, Zhang Z, Chen W, Yan R Q, Jin Y X, Zhang J. Sep. Purif. Technol., 2022, 300: 121846.

doi: 10.1016/j.seppur.2022.121846     URL    
[75]
Guo W X, Zhang F, Lin C J, Wang Z L. Adv. Mater., 2012, 24(35): 4761.

doi: 10.1002/adma.201201075     URL    
[76]
Du C Y, Zhang Y, Zhang Z, Zhou L, Yu G L, Wen X F, Chi T Y, Wang G L, Su Y H, Deng F F, Lv Y C, Zhu H. Chem. Eng. J., 2022, 431: 133932.

doi: 10.1016/j.cej.2021.133932     URL    
[77]
Bokare A D, Choi W. J. Hazard. Mater., 2014, 275: 121.

doi: 10.1016/j.jhazmat.2014.04.054     pmid: 24857896
[78]
Fu H F, Song X X, Wu L, Zhao C, Wang P, Wang C C. Mater. Res. Bull., 2020, 125: 110806.
[79]
Wang F X, Wang C C, Du X D, Li Y, Wang F, Wang P. Chem. Eng. J., 2022, 429: 132495.

doi: 10.1016/j.cej.2021.132495     URL    
[80]
Zhao Q, Wang C C, Wang P. Chin. Chem. Lett., 2022, 33(11): 4828.

doi: 10.1016/j.cclet.2022.01.033     URL    
[81]
Wu L, Wang C C, Chu H Y, Yi X H, Wang P, Zhao C, Fu H F. Chemosphere, 2021, 280: 130659.

doi: 10.1016/j.chemosphere.2021.130659     URL    
[82]
Chen D D, Yi X H, Ling L, Wang C C, Wang P. Appl. Organomet. Chem., 2020, 34(9): e5795.
[83]
Gao C, Chen S, Quan X, Yu H T, Zhang Y B. J. Catal., 2017, 356: 125.

doi: 10.1016/j.jcat.2017.09.015     URL    
[84]
Zhang Y W, Liu F, Yang Z C, Qian J S, Pan B C. Nano. Res., 2021, 14(7): 2383.

doi: 10.1007/s12274-020-3239-1    
[85]
Zhao C C, Dong P, Liu Z M, Wu G R, Wang S J, Wang Y Q, Liu F. RSC Adv., 2017, 7(39): 24453.

doi: 10.1039/C7RA01883E     URL    
[86]
Aboueloyoun Taha A, Huang L B, Ramakrishna S, Liu Y. J. Water Process. Eng., 2020, 33: 101004.

doi: 10.1016/j.jwpe.2019.101004     URL    
[87]
Liang H, Liu R P, An X Q, Hu C Z, Zhang X W, Liu H J. Chem. Eng. J., 2021, 414: 128669.

doi: 10.1016/j.cej.2021.128669     URL    
[88]
Fu J W, Wang L, Chen Y H, Yan D Y, Ou H S. Environ. Sci. Pollut. Res., 2021, 28(48): 68560.

doi: 10.1007/s11356-021-14834-1    
[89]
Liang H, Liu R P, Hu C Z, An X Q, Zhang X W, Liu H J, Qu J H. J. Hazard. Mater., 2021, 406: 124692.

doi: 10.1016/j.jhazmat.2020.124692     URL    
[90]
Karami K, Beram S M, Siadatnasab F, Bayat P, Ramezanpour A. J. Mol. Struct., 2021, 1231: 130007.
[91]
Li Z T, Gu Y F, Li F T. J. Environ. Chem. Eng., 2022, 10(3): 107686.

doi: 10.1016/j.jece.2022.107686     URL    
[92]
Bao C S, Zhao J, Sun Y Y, Zhao X L, Zhang X H, Zhu Y K, She X L, Yang D J, Xing B S. Environ. Sci.: Nano, 2021, 8(8): 2347.
[93]
Ma Y W, Lu Y F, Hai G T, Dong W J, Li R J, Liu J H, Wang G. Sci. Bull., 2020, 65(8): 658.

doi: 10.1016/j.scib.2020.02.001     URL    
[94]
Yan D Y, Hu H, Gao N Y, Ye J S, Ou H S. Appl. Surf. Sci., 2019, 498: 143836.

doi: 10.1016/j.apsusc.2019.143836     URL    
[95]
Lin J L, Hu H, Gao N Y, Ye J S, Chen Y J, Ou H S. J. Water Process. Eng., 2020, 33: 101010.

doi: 10.1016/j.jwpe.2019.101010     URL    
[96]
Fakhri H, Farzadkia M, Boukherroub R, Srivastava V, Sillanpää M. Sol. Energy, 2020, 208: 990.

doi: 10.1016/j.solener.2020.08.050     URL    
[97]
Bagherzadeh S B, Kazemeini M, Mahmoodi N M. J. Colloid Interface Sci., 2021, 602: 73.

doi: 10.1016/j.jcis.2021.05.181     URL    
[98]
Li Y C, Wang X Y, Duan Z Y, Yu D H, Wang Q, Ji D D, Liu W X. Sep. Purif. Technol., 2022, 293: 121099.

doi: 10.1016/j.seppur.2022.121099     URL    
[99]
Song R T, Yao J, Yang M, Ye Z B, Xie Z, Zeng X. Nanoscale, 2022, 14(18): 7055.

doi: 10.1039/D1NR07915H     URL    
[100]
Lin H D, Jie B R, Ye J Y, Zhai Y X, Luo Z J, Shao G J, Chen R Z, Zhang X D, Yang Y Q. Surf. Interfaces, 2023, 36: 102564.
[101]
Zheng L, Gu Y F, Hua B L, Fu J R, Li F T. Chemosphere, 2022, 307: 135728.

doi: 10.1016/j.chemosphere.2022.135728     URL    
[102]
Wang J L, Tang J T. J. Mol. Liq., 2021, 332: 115755.

doi: 10.1016/j.molliq.2021.115755     URL    
[103]
Wu Q S, Yang H P, Kang L, Gao Z, Ren F F. Appl. Catal. B Environ., 2020, 263: 118282.

doi: 10.1016/j.apcatb.2019.118282     URL    
[104]
Jiang S T, Zhao Z Y, Chen J F, Yang Y, Ding C Y, Yang Y Q, Wang Y X, Liu N, Wang L, Zhang X D. Surf. Interfaces, 2022, 30: 101843.
[105]
Zhang X W, Lan M Y, Wang F, Yi X H, Wang C C. J. Environ. Chem. Eng., 2022, 10(3): 107997.

doi: 10.1016/j.jece.2022.107997     URL    
[106]
Zhang X W, Lan M Y, Wang F, Wang C C, Wang P, Ge C J, Liu W. Chem. Eng. J., 2022, 450: 138082.

doi: 10.1016/j.cej.2022.138082     URL    
[107]
Yi X H, Wang C C. Progress in Chemistry, 2021, 33(03): 471.
(衣晓虹, 王崇臣. 化学进展, 2021, 33(03): 471.).
[108]
Li X H, Guo W L, Liu Z H, Wang R Q, Liu H. Appl. Surf. Sci., 2016, 369: 130.

doi: 10.1016/j.apsusc.2016.02.037     URL    
[109]
Yue X X, Guo W L, Li X H, Zhou H H, Wang R Q. Environ. Sci. Pollut. Res., 2016, 23(15): 15218.

doi: 10.1007/s11356-016-6702-5     URL    
[110]
Li X H, Guo W L, Liu Z H, Wang R Q, Liu H. J. Hazard. Mater., 2017, 324: 665.

doi: 10.1016/j.jhazmat.2016.11.040     URL    
[111]
Gong Y, Yang B, Zhang H, Zhao X. J. Mater. Chem. A, 2018, 6(46): 23703.

doi: 10.1039/C8TA07915C     URL    
[112]
Yang J Y, Zeng Z Q, Huang Z G, Cui Y. Catalysts, 2019, 9(11): 906.

doi: 10.3390/catal9110906     URL    
[113]
Hu H, Zhang H X, Chen Y, Chen Y J, Zhuang L, Ou H S. Chem. Eng. J., 2019, 368: 273.

doi: 10.1016/j.cej.2019.02.190     URL    
[114]
He L, Zhang Y Q, Zheng Y E, Jia Q M, Shan S Y, Dong Y N. J. Porous Mater., 2019, 26(6): 1839.

doi: 10.1007/s10934-019-00778-y    
[115]
Zhang M W, Lin K Y A, Huang C F, Tong S P. Sep. Purif. Technol., 2019, 227: 115632.
[116]
Liu Z, Su R D, Sun X, Zhou W Z, Gao B Y, Yue Q Y, Li Q. Sci. Total Environ., 2020, 741: 140464.

doi: 10.1016/j.scitotenv.2020.140464     URL    
[117]
Xiao Z Y, Li Y, Fan L, Wang Y X, Li L. J. Colloid Interface Sci., 2021, 589: 298.

doi: 10.1016/j.jcis.2020.12.123     URL    
[118]
Jiang H, Zhong Y, Tian K X, Pang H L, Hao Y Y. Appl. Surf. Sci., 2022, 577: 151902.

doi: 10.1016/j.apsusc.2021.151902     URL    
[119]
Xu Y Y, Wang Y, Wan J Q, Ma Y W. Chemosphere, 2020, 240: 124849.

doi: 10.1016/j.chemosphere.2019.124849     URL    
[120]
Moazeni M, Hashemian S M, Sillanpää M, Ebrahimi A, Kim K H. J. Environ. Manag., 2022, 303: 113897.

doi: 10.1016/j.jenvman.2021.113897     URL    
[121]
Bi H, Liu C Z, Li J Y, Tan J. J. Solid State Chem., 2022, 306: 122741.
[122]
Wang Y, Guo W L, Li X H. RSC Adv., 2018, 8(64): 36477.

doi: 10.1039/C8RA07007E     URL    
[123]
Li H X, Lou Y C, Zheng J T, Su L Y, Lu S, Xu C, Huang J G, Zhou Q W, Tang J H, Huang M Z. J. Environ. Chem. Eng., 2022, 10(5): 108272.

doi: 10.1016/j.jece.2022.108272     URL    
[124]
Gu A T, Wang P, Chen K W, Djam Miensah E, Gong C H, Jiao Y, Mao P, Chen K, Jiang J L, Liu Y, Yang Y. Sep. Purif. Technol., 2022, 298: 121461.

doi: 10.1016/j.seppur.2022.121461     URL    
[125]
Ezzatahmadi N, Ayoko G A, Millar G J, Speight R, Yan C, Li J H, Li S Z, Zhu J X, Xi Y F. Chem. Eng. J., 2017, 312: 336.

doi: 10.1016/j.cej.2016.11.154     URL    
[126]
Xu L J, Wang J L. Appl. Catal. B Environ., 2012, 123/124: 117.

doi: 10.1016/j.apcatb.2012.04.028     URL    
[127]
Jabbari V, Veleta J M, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D. Chem. Eng. J., 2016, 304: 774.

doi: 10.1016/j.cej.2016.06.034     URL    
[128]
Guo H S, Su S N, Liu Y, Ren X H, Guo W L. Environ. Sci. Pollut. Res., 2020, 27(14): 17194.

doi: 10.1007/s11356-020-08316-z    
[129]
Ali Khan U, Liu J J, Pan J B, Ma H C, Zuo S L, Yu Y C, Ahmad A, Ullah S, li B S. Ind. Eng. Chem. Res., 2019, 58(1): 79.

doi: 10.1021/acs.iecr.8b04627     URL    
[130]
Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22(46): 24230.

doi: 10.1039/c2jm34690g     URL    
[131]
Wang Q J, Wang G L, Liang X F, Dong X L, Zhang X F. Appl. Surf. Sci., 2019, 467/468: 320.

doi: 10.1016/j.apsusc.2018.10.165     URL    
[132]
Qin X T, Qiang T T, Chen L, Wang S T. Microporous Mesoporous Mater., 2021, 315: 110889.
[133]
Qu D, Sun Z C, Zheng M, Li J, Zhang Y Q, Zhang G Q, Zhao H F, Liu X Y, Xie Z G. Adv. Opt. Mater., 2015, 3(3): 360.

doi: 10.1002/adom.v3.3     URL    
[134]
Wang L J, Li X T, Yang B, Xiao K, Duan H B, Zhao H Z. Chem. Eng. J., 2022, 450: 138215.

doi: 10.1016/j.cej.2022.138215     URL    
[135]
Burtch N C, Jasuja H, Walton K S. Chem. Rev., 2014, 114(20): 10575.

doi: 10.1021/cr5002589     URL    
[136]
Kuznicki A, Lorzing G R, Bloch E D. Chem. Commun., 2021, 57(67): 8312.

doi: 10.1039/D1CC02104D     URL    
[137]
Ettlinger R, Lächelt U, Gref R, Horcajada P, Lammers T, Serre C, Couvreur P, Morris R E, Wuttke S. Chem. Soc. Rev., 2022, 51(2), 464.
[138]
Tamames-Tabar C, Cunha D, Imbuluzqueta E, Ragon F, Serre C, Blanco-Prieto M J, Horcajada P. J. Mater. Chem. B, 2014, 2(3): 262.

doi: 10.1039/c3tb20832j     pmid: 32261505
[139]
Ruyra À, Yazdi A, Espín J, CarnÉ-Sánchez A, Roher N, Lorenzo J, Imaz I, Maspoch D. Chem. Eur. J., 2015, 21(6): 2508.

doi: 10.1002/chem.201405380     URL    
[1] 马云华, 邵晗, 蔺腾龙, 邓钦月. 基于多齿钯化合物的磁性纳米颗粒催化材料的设计合成及应用[J]. 化学进展, 2023, 35(9): 1369-1388.
[2] 申小雨, 杜中田, 郭百睿, 郭忠旭, 梁长海. 1,6-己二醇选择氧化内酯化制备ε-己内酯[J]. 化学进展, 2023, 35(8): 1191-1198.
[3] 刘文亮, 王宇琦, 李晓晗, 张轩瑜, 王继乾. 手性等离子体核壳纳米结构的设计及应用[J]. 化学进展, 2023, 35(8): 1168-1176.
[4] 赵晨妍, 孙宇翔, 杨莉莉, 郑明辉, 刘书廷, 刘国瑞. 六氯丁二烯的排放源及环境污染特征[J]. 化学进展, 2023, 35(7): 1040-1052.
[5] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[6] 王海, 王成涛, 周航, 王亮, 肖丰收. 小分子催化转化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 861-885.
[7] 肖丰收, 吴勤明, 王成涛. 分子筛催化反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 886-903.
[8] 秦学涛, 周子乔, 马丁. 金属/金属氧化物催化剂的SMSI效应[J]. 化学进展, 2023, 35(6): 928-939.
[9] 王远, 于聿律, 谭心. 二氧化碳氢化制多碳化合物金属纳米簇催化[J]. 化学进展, 2023, 35(6): 918-927.
[10] 李庆贺, 乔波涛, 张涛. 单原子催化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 821-838.
[11] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[12] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[13] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[14] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[15] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.