留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔盐法制备球形碳化钛纳米粉体的研究

李文靓 郭赟 杨亚东 刘波 辛亚男

李文靓, 郭赟, 杨亚东, 刘波, 辛亚男. 熔盐法制备球形碳化钛纳米粉体的研究[J]. 钢铁钒钛, 2023, 44(4): 10-17. doi: 10.7513/j.issn.1004-7638.2023.04.002
引用本文: 李文靓, 郭赟, 杨亚东, 刘波, 辛亚男. 熔盐法制备球形碳化钛纳米粉体的研究[J]. 钢铁钒钛, 2023, 44(4): 10-17. doi: 10.7513/j.issn.1004-7638.2023.04.002
Li Wenjing, Guo Yun, Yang Yadong, Liu Bo, Xin Yanan. Study on the preparation of spherical TiC nanopowder by molten salt method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 10-17. doi: 10.7513/j.issn.1004-7638.2023.04.002
Citation: Li Wenjing, Guo Yun, Yang Yadong, Liu Bo, Xin Yanan. Study on the preparation of spherical TiC nanopowder by molten salt method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 10-17. doi: 10.7513/j.issn.1004-7638.2023.04.002

熔盐法制备球形碳化钛纳米粉体的研究

doi: 10.7513/j.issn.1004-7638.2023.04.002
详细信息
    作者简介:

    李文靓,1993年出生,女,四川成都人,博士,通讯作者,研究方向为先进功能材料开发及应用,E-mail:wenjingli0610@126.com

  • 中图分类号: TF823

Study on the preparation of spherical TiC nanopowder by molten salt method

  • 摘要: 结合国家十四五战略部署,基于企业资源背景及下游市场需求,提出通过熔盐法短流程制备球形碳化钛纳米粉体,整个流程温度远低于传统工艺温度(1300 ℃),过程不使用易燃易爆还原剂,安全系数高,生产产品质量高、产量可控、生产周期较短且环保,具有一定工业推广性。研究了钛源碳源的选择及配比、熔盐比例,以及纳米颗粒的煅烧温度、保温时长对颗粒形貌和质量的影响。通过XRD和SEM对颗粒的物相组成、显微形貌进行了表征。结果表明,在NaCl-KCl混合盐摩尔比为1∶1的情况下,反应物以Ti/C摩尔比为1∶1配比,700 ℃保温2 h时开始有TiC生成,随温度升高,产物中目标产物的纯度逐步提高,900 ℃保温2 h可得到纯净的目标产物,无其余副产物生成,形貌为球形,粒径为80 nm左右。改变保温时长为5 h时,850 ℃即可得到纯净的目标产物,但粒径会适度增加到100 nm。从降低原料成本考虑,钛源比例为Ti∶TiO2=9∶1时,900 ℃即可得到无杂质的碳化钛纳米颗粒,形貌均为球形颗粒,颗粒粒径为50~65 nm。
  • 图  1  不同温度保温2 h后产物TiC及购买样品的XRD谱

    Figure  1.  XRD spectra of TiC product and purchased samples at different temperatures for 2 h

    图  2  购买成品TiC的SEM形貌

    Figure  2.  SEM images of purchased TiC

    图  3  不同温度保温2 h后产物TiC的SEM形貌

    Figure  3.  SEM images of TiC product at different temperatures for 2 h

    图  4  在850 ℃下不同保温时长的TiC产物XRD谱

    Figure  4.  XRD spectra of TiC products with different calcination time at 850 ℃

    图  5  在850 ℃下不同保温时长的TiC产物SEM形貌

    Figure  5.  SEM images of TiC products with different calcination time at 850 ℃

    图  6  当钛源(Ti∶TiO2)比例为5∶5时保温时长为2 h不同温度(900、950、1000 ℃)的TiC产物XRD谱

    Figure  6.  XRD patterns of TiC products calcinated at different temperatures for 2 h

    图  7  当钛源(Ti∶TiO2)比例为5∶5时保温时长为2 h不同温度(900(a)、950(b)、1000(c) ℃)的TiC产物SEM图

    Figure  7.  SEM images of TiC products calcinated at different temperatures (900 (a), 950 (b), 1000 (c) ℃) for 2 h with a titanium source (Ti∶TiO2) ratio of 5∶5

    图  8  当钛源(Ti∶TiO2)比例为7∶3时保温时长为2 h不同温度(900、950、1000 ℃)的TiC产物XRD谱

    Figure  8.  XRD patterns of TiC products calcinated at different temperatures (900, 950, 1000 ℃) for 2 h with a titanium source (Ti∶TiO2) ratio of 7∶3

    图  9  当钛源(Ti∶TiO2)比例为7∶3时保温时长为2 h不同温度(900、950、1000 ℃)的TiC产物SEM形貌

    Figure  9.  SEM images of TiC products calcinated at different temperatures (900, 950, 1000 ℃) for 2 h with a titanium source (Ti∶TiO2) ratio of 7∶3

    图  10  当钛源(Ti∶TiO2)比例为9∶1时保温时长为2 h不同温度(900、950、1000 ℃)的TiC产物XRD谱

    Figure  10.  XRD patterns of TiC products calcinated at different temperatures (900, 950, 1000 ℃) for 2 h with a titanium source (Ti∶TiO2) ratio of 9∶1

    图  11  当钛源(Ti∶TiO2)比例为9∶1时保温时长为2 h不同温度(900、950、1000 ℃)的TiC产物SEM形貌

    Figure  11.  SEM images of TiC products calcinated at different temperatures (900, 950, 1000 ℃) for 2 h with a titanium source (Ti∶TiO2) ratio of 9∶1

  • [1] Liu Yang, Zhang Haodong, Yuan Suiyan, et al. Study on the mechanical properties of titanium carbide silicon ceramic materials[J]. Modern Salt Chemical Industry, 2021,(5):74−75. (刘洋, 张浩东, 原遂严, 等. 碳化钛硅陶瓷材料力学性能研究[J]. 现代盐化工, 2021,(5):74−75.

    Liu Yang, Zhang Haodong, Yuan Suiyan, et al. Study on the mechanical properties of titanium carbide silicon ceramic materials[J]. Modern Salt Chemical Industry, 2021, (5): 74-75
    [2] Liu Ping'an, Zeng Lingke, Shui Anze, et al. Research progress in the preparation and application of ultrafine titanium carbide powder[J]. Weapon Materials Science and Engineering, 2006,29(5):82−85. (刘平安, 曾令可, 税安泽, 等. 超细碳化钛粉体的制备及应用研究进展[J]. 兵器材料科学与工程, 2006,29(5):82−85.

    Liu Ping'an, Zeng Lingke, Shui Anze, et al. Research progress in the preparation and application of ultrafine titanium carbide powder[J]. Weapon Materials Science and Engineering, 2006, 29 (5): 82-85
    [3] Xu Benping. Current status and latest progress in chemical phase analysis of vanadium and titanium in vanadium and titanium materials[J]. China Inorganic Analytical Chemistry, 2014,4(2):18−23. (徐本平. 钒钛物料中钒钛化学物相分析现状及最新进展[J]. 中国无机分析化学, 2014,4(2):18−23.

    Xu Benping. Current status and latest progress in chemical phase analysis of vanadium and titanium in vanadium and titanium materials[J]. China Inorganic Analytical Chemistry, 2014, 4 (2): 18-23
    [4] Bandar Almangour, Min-seok Baek, Dariusz Grzesiak, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting [J]. Materials Science & Engineering A , 2017: S0921509317315.
    [5] Kattamis T Z, Suganuma T. Solidification processing and tribological behavior of particulate TiC-ferrous matrix composites[J]. Materials Science and Engineering A, 1990,128(2):241−252. doi: 10.1016/0921-5093(90)90232-R
    [6] Sen Wei, Xu Baoqiang, Yang Bin, et al. Preparation of titanium carbide powder by vacuum carbothermal reduction method[J]. Chinese Journal of Non Ferrous Metals:English Edition, 2011,21(1):185−190. (森维, 徐宝强, 杨斌, 等. 真空碳热还原法制备碳化钛粉末[J]. 中国有色金属学报:英文版, 2011,21(1):185−190.

    Sen Wei, Xu Baoqiang, Yang Bin, et al. Preparation of titanium carbide powder by vacuum carbothermal reduction method[J]. Chinese Journal of Non Ferrous Metals: English Edition, 2011, 21 (1): 185-190
    [7] Wang Zhi, Yuan Zhangfu, Guo Zhancheng. Exploration of a new process for direct preparation of titanium alloy by molten salt electrolysis[J]. Non-ferrous Metals, 2003,55(4):32-43. (王志, 袁章福, 郭占成. 熔盐电解法直接制备钛合金新工艺探讨[J]. 有色金属, 2003,55(4):32-43.

    Wang Zhi, Yuan Zhangfu, Guo Zhancheng. Exploration of a new process for direct preparation of titanium alloy by molten salt electrolysis[J]. Non-ferrous Metals, 2003, 55 (4): 4
    [8] Hao Xian, Liang Feng, Li Hongxia, et al. Progress in the preparation of nano titanium carbide and its application in energy storage[J]. Material Introduction, 2021,35(S01):11-18. (郝娴, 梁峰, 李红霞, 等. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021,35(S01):11-18.

    Hao Xian, Liang Feng, Li Hongxia, et al. Progress in the preparation of nano titanium carbide and its application in energy storage[J]. Material Introduction, 2021, 35 (S01): 8
    [9] Wang Jinshu, Xing Pengfei, Li Lili, et al. Preparation and characterization of N doped nano TiO2 by mechanochemical method[J]. Journal of Beijing University of Technology, 2006,32(7):633−637. (王金淑, 邢朋飞, 李莉莉, 等. 机械化学法N掺杂纳米TiO2的制备与表征[J]. 北京工业大学学报, 2006,32(7):633−637.

    Wang Jinshu, Xing Pengfei, Li Lili, et al. Preparation and characterization of N doped nano TiO2 by mechanochemical method[J]. Journal of Beijing University of Technology, 2006, 32 (7): 633-637
    [10] Luo Xuming, Chen Yiming, Mu Yufeng. Self propagating high-temperature synthesis of non stoichiometric titanium carbide based cermets[J]. Material Development and Application, 1995,(5):20−23. (罗序明, 陈一鸣, 母育锋. 自蔓延高温合成非化学计量碳化钛基金属陶瓷[J]. 材料开发与应用, 1995,(5):20−23.

    Luo Xuming, Chen Yiming, Mu Yufeng. Self propagating high-temperature synthesis of non stoichiometric titanium carbide based cermets[J]. Material Development and Application, 1995, (5): 20-23
    [11] Lv Yanan, Chen Dong. Study on atomic diffusion behavior during the formation of titanium carbide particles[J]. Iron Steel Vanadium Titanium, 2021,42(3):143−147. (吕亚男, 陈栋. 碳化钛颗粒形成过程中原子扩散行为研究[J]. 钢铁钒钛, 2021,42(3):143−147.

    Lv Yanan, Chen Dong. Study on atomic diffusion behavior during the formation of titanium carbide particles[J]. Iron Steel Vanadium Titanium, 2021, 42 (3): 143-147
    [12] Zhou Yanli. Research on the salt separation process of sodium chloride and potassium chloride wastewater[J]. Hebei Chemical Industry, 2021,44(1):136−138. (周艳丽. 氯化钠氯化钾废水分盐工艺研究[J]. 河北化工, 2021,44(1):136−138.

    Zhou Yanli. Research on the salt separation process of sodium chloride and potassium chloride wastewater[J]. Hebei Chemical Industry, 2021, 44 (1): 136-138
  • 加载中
图(11)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  37
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回