留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同气源条件下熔渣泡沫化的高温模拟

胡超 王瑞芳 张波 李梦伟 刘承军 姜茂发

胡超, 王瑞芳, 张波, 李梦伟, 刘承军, 姜茂发. 不同气源条件下熔渣泡沫化的高温模拟[J]. 钢铁钒钛, 2021, 42(3): 130-134. doi: 10.7513/j.issn.1004-7638.2021.03.020
引用本文: 胡超, 王瑞芳, 张波, 李梦伟, 刘承军, 姜茂发. 不同气源条件下熔渣泡沫化的高温模拟[J]. 钢铁钒钛, 2021, 42(3): 130-134. doi: 10.7513/j.issn.1004-7638.2021.03.020
Hu Chao, Wang Ruifang, Zhang Bo, Li Mengwei, Liu Chengjun, Jiang Maofa. High-temperature simulation of slag foaming induced by various gas sources[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 130-134. doi: 10.7513/j.issn.1004-7638.2021.03.020
Citation: Hu Chao, Wang Ruifang, Zhang Bo, Li Mengwei, Liu Chengjun, Jiang Maofa. High-temperature simulation of slag foaming induced by various gas sources[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 130-134. doi: 10.7513/j.issn.1004-7638.2021.03.020

不同气源条件下熔渣泡沫化的高温模拟

doi: 10.7513/j.issn.1004-7638.2021.03.020
基金项目: 国家重点研发计划项目(2017YFC0805100);国家自然科学基金项目(U1908224)
详细信息
    作者简介:

    胡超(1996—),男,硕士研究生,河北承德人,主要工作方向:冶金熔渣泡沫化,E-mail:huchao19960109@163.com;

    通讯作者:

    张波(1984—),男,副教授,博士,山东高唐人,主要工作方向:高品质钢冶炼,E-mail:zhangbo@smm.neu.edu.cn

  • 中图分类号: TF703.6

High-temperature simulation of slag foaming induced by various gas sources

  • 摘要: 熔渣泡沫化的有效控制对冶金工艺的稳定控制具有重要的现实意义。开展了外引和内生两种气源条件下熔渣泡沫化的高温模拟研究,得到如下结论:在外引气源条件下,泡沫渣由尺寸为7~15 mm的多面体气泡堆积而成,泡沫化高度随气体流量增加先升高后降低;在内生气源条件下,泡沫渣由尺寸为0.5~1.0 mm的球形气泡堆积而成,泡沫化高度随气体产生量的增加和熔渣碱度的降低而升高。典型炼钢辅料的消泡效果对比如下:活性石灰>纯碱>石灰石>白云石>菱镁矿。
  • 图  1  试验装置示意

    1–钼丝;2–吹气管;3–可移动挡板;4–气体转子流量计;5–刚玉管;6–炉管;7–发热体;8–石墨坩埚;9–氧化镁坩埚;10–样品台;11–热电偶;12–进气口;13–冷却水进口

    Figure  1.  Schematic diagram of experimental apparatus

    图  2  泡沫渣形貌俯视(氩气流量50 mL/min)

    Figure  2.  Top view of foamed slag (Ar flow rate of 50 mL/min)

    图  3  泡沫化高度随氩气流量的变化情况

    Figure  3.  Foaming height variation with Ar flow rate

    图  4  内生气源条件下泡沫渣中的气泡形貌

    (a)、(b)球形气泡;(c)椭球形气泡;(d)不规则气泡

    Figure  4.  Bubble morphology in foamed slag induced by external gas source

    图  5  不同生铁加入量条件下泡沫化高度随时间的变化情况

    Figure  5.  Variation of the foaming height against time with various amounts of pig iron

    图  6  不同熔渣碱度条件下泡沫化高度随时间的变化情况

    Figure  6.  Variation of the foaming height against time under various slag basicity

    图  7  最大泡沫化高度随碱度的变化情况

    Figure  7.  Variation of maximum foaming height with slag basicity

    图  8  典型炼钢辅料的消泡效果对比

    Figure  8.  Comparison of defoaming effects of typical steel-making auxiliary materials

    表  1  试验渣化学成分设计

    Table  1.   Chemical compositions of experimental slag

    序号碱度Rw/%
    CaOSiO2TFeMgO
    试验渣 A0.524.0048.0020.008.00
    试验渣 B0.7530.8641.1420.008.00
    试验渣 C1.031.7231.7220.008.00
    试验渣 D1.2540.0032.0020.008.00
    下载: 导出CSV

    表  2  生铁的化学成分

    Table  2.   Chemical compositions of pig iron %

    FeCSiMnPS
    94.804.600.360.120.080.04
    下载: 导出CSV
  • [1] Qiu Guibao, Shan Cheng, Zhang Xu, et al. Physical modelling of slag foaming phenomenon resulted from inside origin gas formation reaction[J]. Ironmaking and Steelmaking, 2017,44(4):246−254. doi: 10.1080/03019233.2016.1210360
    [2] Zhang Y, Fruehan R J. Effect of carbonaceous particles on slag foaming[J]. Metallurgical and Materials Transactions B, 1995,26(4):813−819. doi: 10.1007/BF02651728
    [3] Zhang Dakui, Yu Shujuan, Geng Jishuang, et al. Formation and control of foaming slag in torpedo ladle[J]. Iron and Steel, 2012,47 (11):89−92. (张大奎, 于淑娟, 耿继双, 等. 鱼雷罐中泡沫渣的成因与控制[J]. 钢铁, 2012,47 (11):89−92.
    [4] Guo Chuanqi, Liu Qian. Optimization process oxygen lance position control to reduce the splash of the blowing BOF steelmaking[J]. China Metallurgy, 2015,25(3):45−47. (郭传奇, 刘谦. 优化过程枪位控制减少复吹转炉炼钢喷溅[J]. 中国冶金, 2015,25(3):45−47.
    [5] Ito K, Fruehan R J. Study on the foaming of CaO-SiO2-FeO slags: Part I. Foaming parameters and experimental results[J]. Metallurgical Transactions B, 1989,20B:509−514.
    [6] Corbari R, Matsuura H, Halder S, et al. Foaming and the rate of the carbon-iron oxide reaction in slag[J]. Metallurgical and Materials Transactions B, 2009,40B:940−948.
    [7] Wang Ruifang, Zhang Bo, Liu Chengjun, et al. Physical modelling of dynamic evolution of metallurgical slag foaming[J]. Experimental Thermal and Fluid Science, 2020,113:110014. doi: 10.1016/j.expthermflusci.2019.110014
    [8] Li Xiang, Bao Yanping, Wang Min, et al. Distribution characteristic and formation process of bubbles in foaming slag in a converter[J]. Chinese Journal of Engineering, 2016,38(6):773−779. (李翔, 包燕平, 王敏, 等. 转炉泡沫渣气泡分布特点及形成过程[J]. 工程科学学报, 2016,38(6):773−779.
    [9] Niu Qiang, Chu Shaojun, Wu Keng, et al. Morphotype conversion of foams in metallurgical melts[J]. Journal of University of Science and Technology Beijing, 2000,22(2):109−112. (牛强, 储少军, 吴铿, 等. 冶金熔体泡沫演化中的转型[J]. 北京科技大学学报, 2000,22(2):109−112. doi: 10.3321/j.issn:1001-053X.2000.02.004
    [10] Guo Zhancheng, Yang Xuemin, Ai Jing, et al. Investigation on the reduction of FetO by CO in foam slag[J]. Iron and Steel, 1996,31(9):10−14. (郭占成, 杨学民, 艾菁, 等. 泡沫渣中CO还原FetO的实验研究[J]. 钢铁, 1996,31(9):10−14.
    [11] Porracin P, Onesti D, Grosso A, et al. Slag foaming and dynamic optimization of AC EAF[J]. Iron and Steel, 2007,42(6):88−90. (Porracin P, Onesti D, Grosso A, 等. 泡沫渣的生成和交流电弧炉动态最优化控制[J]. 钢铁, 2007,42(6):88−90. doi: 10.3321/j.issn:0449-749X.2007.06.020
    [12] Wang Jie, Zeng Jiaqing, Yang Libin. Research status of slag foaming behaviors during steelmaking process[J]. China Metallurgy, 2016,26(9):1−5. (王杰, 曾加庆, 杨利彬. 炼钢过程中熔渣泡沫化的研究现状[J]. 中国冶金, 2016,26(9):1−5.
    [13] Cheng Li. Cause of the problems and solving measures in molten iron pretreatment[J]. Continuous Casting, 2016,41(2):20−23. (程立. 太钢铁水预处理常见问题的原因及解决措施[J]. 连铸, 2016,41(2):20−23.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  9
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回