搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率密度多结级联905 nm垂直腔面发射激光器

潘冠中 荀孟 赵壮壮 孙昀 蒋文静 周静涛 吴德馨

引用本文:
Citation:

高功率密度多结级联905 nm垂直腔面发射激光器

潘冠中, 荀孟, 赵壮壮, 孙昀, 蒋文静, 周静涛, 吴德馨

Multi-junction cascade 905 nm vertical cavity surface emitting lasers with high power density

Pan Guan-Zhong, Xun Meng, Zhao Zhuang-Zhuang, Sun Yun, Jiang Wen-Jing, Zhou Jing-Tao, Wu De-Xin
PDF
HTML
导出引用
  • 本文针对激光雷达等三维传感应用, 设计并制备了905 nm波长的高功率密度5结级联垂直腔面发射激光器(vertical cavity surface emitting laser, VCSEL). 制备的5结级联VCSEL单管(氧化孔径8 μm)的功率转换效率高达55.2%; 其最大斜率效率为5.4 W/A, 约为相同孔径单结VCSEL的5倍. 窄脉冲条件下(脉冲宽度为5.4 ns, 占空比0.019%), 5结级联19单元VCSEL阵列(单元孔径20 μm)的峰值输出功率达到58.3 W, 对应的峰值功率密度高达1.62 kW/mm2. 对不同孔径器件(8—20 μm)的光电特性进行了测试和分析. 结果显示, 这些器件的最大斜率效率均大于5.4 W/A, 最大功率转换效率均大于54%. 这些高性能VCSEL器件可作为激光雷达等三维传感应用的理想光源.
    Aiming at three-dimensional (3D) sensing applications such as LiDAR, high power density five-junction cascaded vertical cavity surface emitting lasers (VCSELs) with 905 nm wavelength are designed and fabricated. The maximum power conversion efficiency is 55.2% for an individual VCSEL emitter with 8 μm oxide aperture. And the maximum slope efficiency of the device is 5.4 W/A, which is approximately 5 times that of traditional single-junction VCSEL with the same aperture. Under the condition of narrow pulse (pulse width 5.4 ns, duty cycle 0.019%) injection, the peak output power of 19-element array (20 μm oxidation aperture for each element) reaches 58.3 W, and the corresponding power density is as high as 1.62 kW/mm2. The devices with various apertures (8–20 μm) are characterized. The results show that the maximum slope efficiencies of all these devices are greater than 5.4 W/A and the maximum PCE is higher than 54%. These high-performance VCSEL devices can be used as ideal light sources for 3D sensing applications such as LiDAR.
      通信作者: 荀孟, xunmeng@ime.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 62104251, 62174178)、中国博士后科学基金(批准号: BX20200358, 2021M703442)、中国科学院前沿科学重点研究计划 (批准号: ZDBS-LYJSC031)和中国科学院青年创新促进会(批准号: 2022115)资助的课题.
      Corresponding author: Xun Meng, xunmeng@ime.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62104251, 62174178), the China Postdoctoral Science Foundation (Grant Nos. BX20200358, 2021M703442), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LYJSC031), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2022115).
    [1]

    Schwarz B 2010 Nat. Photonics 4 7

    [2]

    Kirkpatrick K 2018 Commun. ACM 61 6

    [3]

    Kim J S, Yun S J, Seol D J, Park H J, Kim Y S 2015 IEEE Sens. J. 15 12

    [4]

    Warren M E 2019 IEEE Symposium on VLSI Circuits Kyoto, Japan, June 9–14, 2019 pC254–C255

    [5]

    Seurin J F, Zhou D L, Xu G Y, Miglo A, Li D Z, Chen T, Guo B M, Ghosh C 2016 Proc. SPIE: Conference on Vertical-Cavity Surface-Emitting Lasers XX San Francisco, CA, February 17–18, 2016 p97660D

    [6]

    Xie Y Y, Ni P N, Wang Q H, Kan Q, Briere G, Chen P P, Zhao Z Z, Delga A, Ren H R, Chen H D, Xu C, Genevet P 2020 Nat. Nanotechnol. 15 125Google Scholar

    [7]

    Cheng C H, Shen C C, Kao H Y, et al. 2018 Opto-Electron. Adv. 1 3

    [8]

    Chang-Hasnain C J 2019 IEEE 24th Microoptics Conference (MOC) Toyama, Japan, November 17–20, 2019 p18

    [9]

    Larsson A 2011 IEEE J. Sel. Top. Quantum Electron. 17 6

    [10]

    Liu A, Wolf P, Lott J A, et al. 2019 Photonics Res. 7 2Google Scholar

    [11]

    Koyama F 2014 Opt. Rev. 21 6

    [12]

    Miller M, Grabherr M, King R, et al. 2001 IEEE J. Sel. Top. Quantum Electron 7 2

    [13]

    Knodl T, Straub A, Golling M, Michalzik R, Ebeling K J 2001 IEEE Photonics Technol. Lett. 13 9

    [14]

    Müller M, Philippens M, Grönninger G, et al. 2007 Int. Soc. Opt. Photonics 2007 p6456

    [15]

    Boucher J F, Vilokkinen V, Rainbow P 2009 Proc. SPIE Int. Soc. Opt. Eng. 2009 p74800K

    [16]

    Kotaki Y, Uchiyama S, Iga K 1984 16 th (1984 International) Conference on Solid State Devices and Materials Kobe, Japan, August 30–September 1, 1984 p133

    [17]

    Schmid W, Wiedenmann D, Grabherr M, Jager R, Michalzik R, Ebeling K J 1998 Electron. Lett. 34 6Google Scholar

    [18]

    Knodl T, Golling M, Straub A, Ebeling K J 2001 Electron. Lett. 37 1Google Scholar

    [19]

    Kim J K, Hall E, Nakagawa S, Huntington A, Coldren L A 2000 IEEE 17th International Semiconductor Laser Conf. 2000 p155

    [20]

    Pan G, Xun M, Zhao Z, et al. 2021 IEEE Electron Device Lett. 42 9

    [21]

    Xun M, Pan G, Zhao Z Z, et al. 2021 IEEE Trans. Electron Devices 68 6

  • 图 1  (a) 5结级联VCSEL的结构示意图, 插图为制备得到的实际器件; (b) 驻波场中量子阱和隧道结的位置示意图

    Fig. 1.  (a) Schematic diagram of five-junction cascade VCSEL structure, the inset is the top view of a fabricated device; (b) position diagram of quantum well and tunnel junction in standing wave.

    图 2  氧化孔径8 μm的5结VCSEL与单结VCSEL在室温CW条件下的测试结果 (a) L-I曲线; (b) V-I曲线; (c) PCE-L曲线; (d) 5结VCSEL在1 mA下的光谱

    Fig. 2.  Measured results of 5-junction VCSEL and single junction VCSEL with 8 μm oxide aperture under CW condition at room temperature: (a) L-I curves; (b) V-I curves; (c) PCE-L curves; (d) spectrum of 5-junction VCSEL measured at 1 mA.

    图 3  单结VCSEL和5结VCSEL器件的基模光谱随耗散功率的变化关系

    Fig. 3.  Variation of fundamental mode spectra of single junction VCSEL and 5-junction VCSEL devices with dissipated power.

    图 4  氧化孔径8 μm的5结VCSEL在不同温度下的测试结果 (a) L-I曲线; (b) V-I曲线; (c) PCE-I曲线; (d) 最大PCE和SE随温度的变化

    Fig. 4.  Measured results of 5-junction VCSEL with 8 μm oxide aperture under CW condition at different temperatures: (a) L-I curves; (b) V-I curves; (c) PCE-I curves; (d) max PCE and SE versus temperature.

    图 5  不同氧化孔径5结VCSEL器件在室温下 (a) L-I曲线; (b) V-I曲线; (c) PCE-I曲线; (d) 最大PCE和SE随孔径的变化

    Fig. 5.  Measured results of 5-junction VCSELs with different oxide apertures under CW condition at room temperature: (a) L-I curves; (b) V-I curves; (c) PCE-I curves; (d) max PCE and SE versus oxide aperture.

    图 6  (a) 制备的19单元5结VCSEL阵列的俯视图和尺寸示意图; (b) 驱动板电压为25 V下阵列的光功率响应曲线; (c) 19单元阵列的峰值输出功率随驱动板电压的变化

    Fig. 6.  (a) Structure and size diagram of the fabricated19-element 5-junction VCSEL array; (b) the optical power response curve of the array at driving circuit board voltage of 25 V; (c) peak output power of the array versus circuit board driving voltage.

  • [1]

    Schwarz B 2010 Nat. Photonics 4 7

    [2]

    Kirkpatrick K 2018 Commun. ACM 61 6

    [3]

    Kim J S, Yun S J, Seol D J, Park H J, Kim Y S 2015 IEEE Sens. J. 15 12

    [4]

    Warren M E 2019 IEEE Symposium on VLSI Circuits Kyoto, Japan, June 9–14, 2019 pC254–C255

    [5]

    Seurin J F, Zhou D L, Xu G Y, Miglo A, Li D Z, Chen T, Guo B M, Ghosh C 2016 Proc. SPIE: Conference on Vertical-Cavity Surface-Emitting Lasers XX San Francisco, CA, February 17–18, 2016 p97660D

    [6]

    Xie Y Y, Ni P N, Wang Q H, Kan Q, Briere G, Chen P P, Zhao Z Z, Delga A, Ren H R, Chen H D, Xu C, Genevet P 2020 Nat. Nanotechnol. 15 125Google Scholar

    [7]

    Cheng C H, Shen C C, Kao H Y, et al. 2018 Opto-Electron. Adv. 1 3

    [8]

    Chang-Hasnain C J 2019 IEEE 24th Microoptics Conference (MOC) Toyama, Japan, November 17–20, 2019 p18

    [9]

    Larsson A 2011 IEEE J. Sel. Top. Quantum Electron. 17 6

    [10]

    Liu A, Wolf P, Lott J A, et al. 2019 Photonics Res. 7 2Google Scholar

    [11]

    Koyama F 2014 Opt. Rev. 21 6

    [12]

    Miller M, Grabherr M, King R, et al. 2001 IEEE J. Sel. Top. Quantum Electron 7 2

    [13]

    Knodl T, Straub A, Golling M, Michalzik R, Ebeling K J 2001 IEEE Photonics Technol. Lett. 13 9

    [14]

    Müller M, Philippens M, Grönninger G, et al. 2007 Int. Soc. Opt. Photonics 2007 p6456

    [15]

    Boucher J F, Vilokkinen V, Rainbow P 2009 Proc. SPIE Int. Soc. Opt. Eng. 2009 p74800K

    [16]

    Kotaki Y, Uchiyama S, Iga K 1984 16 th (1984 International) Conference on Solid State Devices and Materials Kobe, Japan, August 30–September 1, 1984 p133

    [17]

    Schmid W, Wiedenmann D, Grabherr M, Jager R, Michalzik R, Ebeling K J 1998 Electron. Lett. 34 6Google Scholar

    [18]

    Knodl T, Golling M, Straub A, Ebeling K J 2001 Electron. Lett. 37 1Google Scholar

    [19]

    Kim J K, Hall E, Nakagawa S, Huntington A, Coldren L A 2000 IEEE 17th International Semiconductor Laser Conf. 2000 p155

    [20]

    Pan G, Xun M, Zhao Z, et al. 2021 IEEE Electron Device Lett. 42 9

    [21]

    Xun M, Pan G, Zhao Z Z, et al. 2021 IEEE Trans. Electron Devices 68 6

  • [1] 成佳, 伍亚东, 晏日, 彭雪芳, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 基于外腔面发射激光器腔内三倍频的可调谐紫外激光器. 物理学报, 2024, 73(8): 084202. doi: 10.7498/aps.73.20231923
    [2] 伍亚东, 朱仁江, 晏日, 彭雪芳, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 高转换效率腔内倍频外腔面发射蓝光激光器. 物理学报, 2024, 73(1): 014203. doi: 10.7498/aps.73.20231278
    [3] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [4] 潘智鹏, 李伟, 吕家纲, 聂语葳, 仲莉, 刘素平, 马骁宇. 940 nm 垂直腔面发射激光器单管器件的设计与制备. 物理学报, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [5] 张建伟, 张星, 周寅利, 李惠, 王岩冰, 陈志明, 徐嘉琪, 宁永强, 王立军. 1550 nm毫瓦级单横模垂直腔面发射半导体激光器. 物理学报, 2022, 71(6): 064204. doi: 10.7498/aps.71.20212132
    [6] 周寅利, 贾雨棽, 张星, 张建伟, 刘占超, 宁永强, 王立军. 795 nm高温高功率垂直腔面发射激光器及原子陀螺仪应用. 物理学报, 2022, 71(13): 134204. doi: 10.7498/aps.71.20212422
    [7] 张福领, 付丽珊, 胡丕丽, 韩文杰, 王宏卓, 张峰, 关宝璐. 795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性. 物理学报, 2021, 70(22): 224207. doi: 10.7498/aps.70.20210293
    [8] 赵壮壮, 荀孟, 潘冠中, 孙昀, 周静涛, 王大海, 吴德馨. 高功率转换效率905 nm垂直腔面发射激光器的设计与制备. 物理学报, 2021, 70(11): 114202. doi: 10.7498/aps.70.20210043
    [9] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [10] 秦璐, 任杰, 许兴胜. 垂直腔面发射激光器低温光电特性. 物理学报, 2019, 68(19): 194203. doi: 10.7498/aps.68.20190427
    [11] 于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮. 940 nm垂直腔面发射激光器的设计及制备. 物理学报, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [12] 姚晓洁, 唐曦, 吴正茂, 夏光琼. 基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数. 物理学报, 2018, 67(2): 024204. doi: 10.7498/aps.67.20171902
    [13] 马凌华, 夏光琼, 陈建军, 吴正茂. 1550 nm垂直腔面发射激光器的特征参量随温度的变化. 物理学报, 2018, 67(21): 214203. doi: 10.7498/aps.67.20180572
    [14] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [15] 杨继云, 吴正茂, 梁卿, 陈建军, 钟祝强, 夏光琼. 1550nm垂直腔面发射激光器自旋反转模型中关键参量数值的实验确定. 物理学报, 2016, 65(12): 124203. doi: 10.7498/aps.65.124203
    [16] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [17] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [18] 周丽丹, 粟敬钦, 李平, 刘兰琴, 王文义, 王方, 莫磊, 程文雍, 张小民. 高功率固体激光装置光学元件“缺陷”分布的功率谱密度方法及等效求法. 物理学报, 2009, 58(9): 6279-6284. doi: 10.7498/aps.58.6279
    [19] 彭鸿雁, 周传胜, 赵立新, 金曾孙, 张 冰, 陈宝玲, 陈玉强, 李敏君. 激光功率密度对类金刚石膜结构性能的影响. 物理学报, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [20] 李惠青, 张 杰, 崔大复, 许祖彦, 宁永强, 晏长岭, 秦 莉, 刘 云, 王立军, 曹健林. 高功率垂直腔面发射半导体激光器优化设计研究. 物理学报, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
计量
  • 文章访问数:  4423
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-06-23
  • 上网日期:  2022-10-11
  • 刊出日期:  2022-10-20

/

返回文章
返回