skip to main content

Utilization of dairy waste scum oil for microwave-assisted biodiesel production over KOH-waste eggshell based calcium oxide catalyst

1Centre for Biofuel and Biochemical Research (CBBR), Institute of Sustainable Living (ISB), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Malaysia

2Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

Received: 4 Dec 2023; Revised: 18 Jan 2024; Accepted: 20 Feb 2024; Available online: 22 Feb 2024; Published: 1 Mar 2024.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The sustainability can be maintained by utilizing the available waste as feedstock and catalyst such as dairy and eggshell waste respectively for biodiesel production. In this study, the calcium oxide (CaO) synthesized from calcined eggshell was doped with potassium hydroxide (KOH-ECaO) via wet impregnation method and analyzed the catalyst performance on biodiesel production from dairy waste scum oil (DWSO) via microwave assisted transesterification. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy equipped with Energy Dispersive X-ray (SEM-EDX), Brunauer-Emmett-Teller (BET) and Thermogravimetric analysis (TGA). The fatty acid methyl ester (FAME) contents were deduced by Gas Chromatography-Mass Spectrometry (GC-MS). The KOH-ECaO catalyst showed a good potential based on the characterizations analysis such as high pore size (25.5 nm) which supported by SEM pattern analysis. The highest biodiesel production (75%) was obtained at optimum reaction parameters conditions. The optimized conditions were discovered to be 3 wt.% of catalyst, 16:1 of methanol to oil molar ratio, reaction temperature of 65°C and 15 minutes of reaction time as microwave provided faster reaction for the transesterification. These innovative results showed that KOH-ECaO could enhance the biodiesel production from DWSO which encouraged the usage of waste for wealth product.
Fulltext View|Download
Keywords: calcium oxide; dairy waste scum oil; eggshell; microwave assisted transesterification; potassium hydroxide
Funding: Center for Biofuel and Biochemical Research (CBBR) Universiti Teknologi PETRONAS; Higher Institution Centre of Excellence (HiCoE) Malaysia grant under contract 015MA0-104; Yayasan Universiti Teknologi Petronas (YUTP-FRG) grant under contract 015LC0-331; International Collaborative R under contract

Article Metrics:

  1. Ahmad, T., Aadil, R. M., Ahmed, H., Rahman, U., Soares, B. C. V, Souza, S. L. Q., Pimentel, T. C., Scudino, H., Guimarães, J. T., Esmerino, E. A., Freitas, M. Q., Almada, R. B., Vendramel, S. M. R., Silva, M. C., & Cruz, A. G. (2019). Treatment and utilization of dairy industrial waste : A review. Trends in Food Science & Technology, 88, 361–372. https://doi.org/10.1016/j.tifs.2019.04.003
  2. Ahmad, T., Danish, M., Kale, P., Geremew, B., Adeloju, S. B., Nizami, M., & Ayoub, M. (2019). Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renewable Energy, 139, 1272–1280. https://doi.org/10.1016/j.renene.2019.03.036
  3. Ali, N. S., Harharah, H. N., Salih, I. K., Cata Saady, N. M., Zendehboudi, S., & Albayati, T. M. (2023). Applying MCM-48 mesoporous material, equilibrium, isotherm, and mechanism for the effective adsorption of 4-nitroaniline from wastewater. Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-37090-4
  4. Alishahi, A., Golmakani, M. T., & Niakousari, M. (2021). Feasibility Study of Microwave-Assisted Biodiesel Production from Vegetable Oil Refinery Waste. European Journal of Lipid Science and Technology, 123(9), 1–10. https://doi.org/10.1002/ejlt.202000377
  5. Aparamarta, H. W., Gunawan, S., Ihsanpuro, S. I., Safawi, I., Bhuana, D. S., Mochtar, A. F., & Yusril Izhar Noer, M. (2022). Optimization and kinetic study of biodiesel production from nyamplung oil with microwave-assisted extraction (MAE) technique. Heliyon, 8(8), e10254. https://doi.org/10.1016/j.heliyon.2022.e10254
  6. Awogbemi, O., Inambao, F., & Onuh, E. I. (2020). Modification and characterization of chicken eggshell for possible catalytic applications. Heliyon, 6. https://doi.org/10.1016/j.heliyon.2020.e05283
  7. Ayodeji, A. A., Blessing, I. E., & Sunday, F. O. (2018). Data on calcium oxide and cow bone catalysts used for soybean biodiesel production. Data in Brief, 18, 512–517. https://doi.org/10.1016/j.dib.2018.03.057
  8. Ayoub, M., & Abdullah, A. Z. (2012). Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews, 16(5), 2671–2686. https://doi.org/10.1016/j.rser.2012.01.054
  9. Aziz, M., Triwahyono, S., Jalil, A., Rapai, H., & Atabani, A. (2016). Transesterification of moringa oleifera oil to biodiesel using potassium flouride loaded eggshell as catalyst. Malaysian Journal of Catalysis, 1(1). https://doi.org/10.11113/mjcat.v1n1.16
  10. Balasubramanian, R., Sircar, A., Sivakumar, P., & Anbarasu, K. (2018). Production of biodiesel from dairy wastewater sludge : A laboratory and pilot scale study. Egyptian Journal of Petroleum, 27(4), 939–943. https://doi.org/10.1016/j.ejpe.2018.02.002
  11. Binnal, P., Amruth, A., Basawaraj, M. P., Chethan, T. S., Murthy, K. R. S., & Rajashekhara, S. (2020). Microwave-assisted esterification and transesterification of dairy scum oil for biodiesel production: kinetics and optimisation studies. Indian Chemical Engineer, 0(0), 1–13. https://doi.org/10.1080/00194506.2020.1748124
  12. Blasi, C. Di, Galgano, A., & Branca, C. (2009). Effects of potassium hydroxide impregnation on wood pyrolysis. Energy and Fuels, 23(2), 1045–1054. https://doi.org/10.1021/ef800827q
  13. Bundhoo, Z. M. A. (2018). Microwave-assisted conversion of biomass and waste materials to biofuels. Renewable and Sustainable Energy Reviews, 82, 1149–1177. https://doi.org/10.1016/j.rser.2017.09.066
  14. Çakırca, E. E., N Tekin, G., İlgen, O., & N Akın, A. (2019). Catalytic activity of CaO-based catalyst in transesterification of microalgae oil with methanol. Energy and Environment, 30(1), 176–187. https://doi.org/10.1177/0958305X18787317
  15. Cancela, A., Maceiras, R., Urrejola, S., Sanchez, A., Lagoas-marcosende, C., & Militar, E. N. (2012). Microwave-Assisted Transesterification of Macroalgae. Energies, 862–871. https://doi.org/10.3390/en5040862
  16. Chukwuka, S., Abiodun, O., & Amos, A. (2023). Optimization of microwave-assisted biodiesel production from watermelon seeds oil using thermally modified kwale anthill mud as base catalyst. Heliyon, 9(7). https://doi.org/10.1016/j.heliyon.2023.e17762
  17. de Freitas, E. N., Salgado, J. C. S., Alnoch, R. C., Contato, A. G., Habermann, E., Michelin, M., Martínez, C. A., & Polizeli, M. de L. T. M. (2021). Challenges of biomass utilization for bioenergy in a climate change scenario. Biology, 10(12). https://doi.org/10.3390/biology10121277
  18. Ding, Y., Zhang, Z., Wang, L., Zhang, Q., & Pan, S. (2017). The role of sodium compound fluxes used to synthesize Gd2O2S:Tb3+ by sulfide fusion method. Journal of Materials Science: Materials in Electronics, 28(3), 2723–2730. https://doi.org/10.1007/s10854-016-5851-0
  19. Ferraz, E., Gamelas, J. A. F., Coroado, J., Monteiro, C., & Rocha, F. (2019). Recycling Waste Seashells to Produce Calcitic Lime: Characterization and Wet Slaking Reactivity. Waste and Biomass Valorization, 10(8), 2397–2414. https://doi.org/10.1007/s12649-018-0232-y
  20. Gallagher, J. (2019). The importance of being porous. Nature Energy, 4(8), 630. https://doi.org/10.1038/s41560-019-0455-6
  21. Gernaat, D. E. H. J., de Boer, H. S., Daioglou, V., Yalew, S. G., Müller, C., & van Vuuren, D. P. (2021). Climate change impacts on renewable energy supply. Nature Climate Change, 11(2), 119–125. https://doi.org/10.1038/s41558-020-00949-9
  22. Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., Santamaría, J., & Fierro, J. L. G. (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73(3), 317–326. https://doi.org/10.1016/j.apcatb.2006.12.017
  23. Gupta, A. R., & Rathod, V. K. (2018). Calcium diglyceroxide catalyzed biodiesel production from waste cooking oil in the presence of microwave : Optimization and kinetic studies. Renewable Energy, 121, 757–767. https://doi.org/10.1016/j.renene.2017.11.027
  24. Habte, L., Shiferaw, N., Mulatu, D., Thenepalli, T., Chilakala, R., & Ahn, J. W. (2019). Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method. Sustainability, 11, 2–10. https://doi.org/10.3390/su11113196
  25. Hadiyanto, H., Lestari, S.P., Abdullah, A.,Widayat, W., Sutanto, H. (2016).The development of fly ash-supported CaO derived from mollusk shell of Anadara granosa and Paphia undulata as heterogeneous CaO catalyst in biodiesel synthesis. Int J Energy Environ Eng 7, 297–305 (2016). https://doi.org/10.1007/s40095-016-0212-6
  26. Hamza, M., Ayoub, M., Shamsuddin, R. Bin, Mukhtar, A., Saqib, S., Zahid, I., Ameen, M., Ullah, S., Al-Sehemi, A. G., & Ibrahim, M. (2021). A review on the waste biomass derived catalysts for biodiesel production. Environmental Technology and Innovation, 21, 101200. https://doi.org/10.1016/j.eti.2020.101200
  27. Hsiao, M. C., Kuo, J. Y., Hsieh, S. A., Hsieh, P. H., & Hou, S. S. (2020). Optimized conversion of waste cooking oil to biodiesel using modified calcium oxide as catalyst via a microwave heating system. Fuel, 266(October 2019), 117114. https://doi.org/10.1016/j.fuel.2020.117114
  28. Hua, Y., Omar, M., Nolasco-hipolito, C., & Taufiq-yap, Y. H. (2015). Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil : Catalyst characterization and biodiesel yield performance. Applied Energy, 160, 58–70. https://doi.org/10.1016/j.apenergy.2015.09.023
  29. Kavitha, V., Geetha, V., & Jacqueline, P. J. (2019). Production of biodiesel from dairy waste scum using eggshell waste. Process Safety and Environmental Protection, 125, 279–287. https://doi.org/10.1016/j.psep.2019.03.021
  30. Khatibi, M., Khorasheh, F., & Larimi, A. (2021). Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell. Renewable Energy, 163, 1626–1636. https://doi.org/10.1016/j.renene.2020.10.039
  31. Kirubakaran, M., & Selvan, V. A. M. (2021). Experimental investigation on the effects of micro eggshell and nano-eggshell catalysts on biodiesel optimization from waste chicken fat. Bioresource Technology Reports, 14, 100658. https://doi.org/10.1016/j.biteb.2021.100658
  32. Kirubakaran, M., & V, A. M. S. (2018). Eggshell as heterogeneous catalyst for synthesis of biodiesel from high free fatty acid chicken fat and its working characteristics on a CI engine. Journal of Environmental Chemical Engineering, 6(4), 4490–4503. https://doi.org/10.1016/j.jece.2018.06.027
  33. Krishnamurthy, K. N., Sridhara, S. N., & Ananda Kumar, C. S. (2020). Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst. Renewable Energy, 146, 280–296. https://doi.org/10.1016/j.renene.2019.06.161
  34. Munir, M., Ahmad, M., Rehan, M., Saeed, M., Lam, S. S., Nizami, A. S., Waseem, A., Sultana, S., & Zafar, M. (2020). Production of high quality biodiesel from novel non-edible Raphnus raphanistrum L. seed oil using copper modified montmorillonite clay catalyst. Environmental Research, 193(October 2020), 110398. https://doi.org/10.1016/j.envres.2020.110398
  35. Narasimhan, M., Chandrasekaran, M., Govindasamy, S., & Aravamudhan, A. (2021). Heterogeneous nanocatalysts for sustainable biodiesel production : A review. Journal of Environmental Chemical Engineering, 9. https://doi.org/10.1016/j.jece.2020.104876
  36. Nath, D., Jangid, K., Susaniya, A., Kumar, R., & Vaish, R. (2021). Eggshell derived CaO-Portland cement antibacterial composites. Composites Part C: Open Access, 5(November 2020), 100123. https://doi.org/10.1016/j.jcomc.2021.100123
  37. Nunez, S., Arets, E., Alkemade, R., Verwer, C., & Leemans, R. (2019). Assessing the impacts of climate change on biodiversity: is below 2 °C enough? Climatic Change, 154(3–4), 351–365. https://doi.org/10.1007/s10584-019-02420-x
  38. Nur, M., Mohiddin, B., Hua, Y., Xuan, Y., Kansedo, J., Mubarak, N. M., Omar, M., San, Y., & Khalid, M. (2021). Evaluation on feedstock , technologies , catalyst and reactor for sustainable biodiesel production : A review. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2021.03.036
  39. Osman, A. I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., Rooney, D. W., & Yap, P. S. (2022). Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environmental Chemistry Letters, 21(2), 741–764. https://doi.org/10.1007/s10311-022-01532-8
  40. Pavlović, S. M., Marinković, D. M., Kostić, M. D., Janković-Častvan, I. M., Mojović, L. V., Stanković, M. V., & Veljković, V. B. (2020). A CaO/zeolite-based catalyst obtained from waste chicken eggshell and coal fly ash for biodiesel production. Fuel, 267(January), 117. https://doi.org/10.1016/j.fuel.2020.117171
  41. Prashanth, P. F., Shravani, B., Vinu, R., Lavanya, M., & Prabu, V. R. (2021). Production of diesel range hydrocarbons from crude oil sludge via microwave-assisted pyrolysis and catalytic upgradation. Process Safety and Environmental Protection, 146, 383–395. https://doi.org/10.1016/j.psep.2020.08.025
  42. Qadeer, M. U., Ayoub, M., Komiyama, M., Khan Daulatzai, M. U., Mukhtar, A., Saqib, S., Ullah, S., Qyyum, M. A., Asif, S., & Bokhari, A. (2021). Review of biodiesel synthesis technologies, current trends, yield influencing factors and economical analysis of supercritical process. Journal of Cleaner Production, 309(May), 127388. https://doi.org/10.1016/j.jclepro.2021.127388
  43. Rahman, W. U., Fatima, A., Anwer, A. H., Athar, M., Khan, M. Z., Khan, N. A., & Halder, G. (2019). Biodiesel synthesis from eucalyptus oil by utilizing waste egg shell derived calcium based metal oxide catalyst. Process Safety and Environmental Protection, 122, 313–319. https://doi.org/10.1016/j.psep.2018.12.015
  44. Rashtizadeh, E., Farzaneh, F., & Talebpour, Z. (2014). Synthesis and characterization of Sr3Al2O6 nanocomposite as catalyst for biodiesel production. Bioresource Technology, 154, 32–37. https://doi.org/10.1016/j.biortech.2013.12.014
  45. Sarno, M., & Iuliano, M. (2020). Biodiesel Production from Dairy Waste Scum by Using a Efficient Nano-Biocatalyst. Chemical Engineering Transactions, 79, 181–186. https://doi.org/10.3303/CET2079031
  46. Shareef, S. M., & Mohanty, D. K. (2020). Experimental investigations of dairy scum biodiesel in a diesel engine with variable injection timing for performance, emission and combustion. Fuel, 280(June), 118647. https://doi.org/10.1016/j.fuel.2020.118647
  47. Tan, Y. H., Abdullah, M. O., Kansedo, J., Mubarak, N. M., Chan, Y. S., & Nolasco-Hipolito, C. (2019). Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy, 139(November 2014), 696–706. https://doi.org/10.1016/j.renene.2019.02.110
  48. Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., & Gerzabek, M. H. (2007). An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environmental Chemistry Letters, 5(1), 9–12. https://doi.org/10.1007/s10311-006-0079-5
  49. Tesfaye, M., & Katiyar, V. (2016). Microwave assisted synthesis of biodiesel from soybean oil : Effect of poly ( lactic acid ) -oligomer on cold flow properties , IC engine performance and emission characteristics. Fuel, 170, 107–114. https://doi.org/10.1016/j.fuel.2015.12.018
  50. Varrica, D., Tamburo, E., Vultaggio, M., & Di Carlo, I. (2019). ATR–FTIR spectral analysis and soluble components of PM10 and PM2.5 particulate matter over the urban area of palermo (Italy) during normal days and saharan events. International Journal of Environmental Research and Public Health, 16(14). https://doi.org/10.3390/ijerph16142507
  51. Watkins, R. S., Lee, A. F., & Wilson, K. (2004). Li-CaO catalysed tri-glyceride transesterification for biodiesel applications. Green Chemistry, 6(7), 335–340. https://doi.org/10.1039/b404883k
  52. Widayat, W., Darmawan, T., Hadiyanto, H., Ar-Rosyid, R. (2017) Preparation of Heterogeneous CaO Catalysts for Biodiesel Production. J. Phys.: Conf. Ser. 877 012018, https://doi.org/10.1088/1742-6596/877/1/012018
  53. Widiarti, N., Wijianto, W., Wijayati, N., Harjito, H., Kusuma, S. B. W., Prasetyoko, D., & Suprapto, S. (2017). Catalytic activity of calcium oxide from fishbone waste in waste cooking oil transesterification process. Jurnal Bahan Alam Terbarukan, 6(2), 97–106. https://doi.org/10.15294/jbat.v6i2.8335
  54. Yadav, G., Yadav, N., & Ahmaruzzaman, M. (2023). Microwave-assisted sustainable synthesis of biodiesel on Oryza sativa catalyst derived from agricultural waste by esterification reaction. Chemical Engineering and Processing - Process Intensification, 187(December 2022), 109327. https://doi.org/10.1016/j.cep.2023.109327
  55. Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., … Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9326–9331. https://doi.org/10.1073/pnas.1701762114

Last update:

No citation recorded.

Last update: 2024-04-26 07:27:46

No citation recorded.