一种基于条件对抗网络的自监督地震随机噪声压制方法

石战战, 黄果, 庞溯, 王元君, 周强, 池跃龙. 2023. 一种基于条件对抗网络的自监督地震随机噪声压制方法. 地球物理学进展, 38(1): 242-253. doi: 10.6038/pg2023FF0625
引用本文: 石战战, 黄果, 庞溯, 王元君, 周强, 池跃龙. 2023. 一种基于条件对抗网络的自监督地震随机噪声压制方法. 地球物理学进展, 38(1): 242-253. doi: 10.6038/pg2023FF0625
SHI ZhanZhan, HUANG Guo, PANG Su, WANG YuanJun, ZHOU Qiang, CHI YueLong. 2023. Self-supervised seismic random noise attenuation based on conditional adversarial networks. Progress in Geophysics, 38(1): 242-253. doi: 10.6038/pg2023FF0625
Citation: SHI ZhanZhan, HUANG Guo, PANG Su, WANG YuanJun, ZHOU Qiang, CHI YueLong. 2023. Self-supervised seismic random noise attenuation based on conditional adversarial networks. Progress in Geophysics, 38(1): 242-253. doi: 10.6038/pg2023FF0625

一种基于条件对抗网络的自监督地震随机噪声压制方法

  • 基金项目:

    国家科技重大专项课题(2016ZX05026-001)、四川省教育厅项目(16ZB0410)和川西南空间效应探测与应用四川省高等学校重点实验室开放基金(YBXM202102001)联合资助

详细信息
    作者简介:

    石战战, 男, 1986年生, 博士, 副教授, 研究方向为地球物理信号智能化处理.E-mail: shizhanzh@163.com

    通讯作者: 黄果, 男, 1980年生, 博士, 教授, 研究方向为分数阶微积分理论、数字信号处理、模式识别、分数阶忆阻和深度学习.E-mail: 79017771@qq.com
  • 中图分类号: P631

Self-supervised seismic random noise attenuation based on conditional adversarial networks

More Information
  • 针对地震数据标注困难,提出基于改进的条件对抗网络的自监督随机噪声压制方法.训练过程分为2步:(1)向合成地震记录混入随机噪声构造含噪声-纯净训练集,采用监督学习策略,通过改进的条件生成对抗网络学习地震数据的有效特征;(2)借助自监督损失函数,利用目标域实际数据对预训练模型进行微调.2步训练法利用了源域合成地震记录与目标域实际地震数据之间的相似性,将源域学习到的模型迁移到目标域,实现地震数据自适应盲去噪.理论模型和实际地震数据试算结果验证所提方法具有较好的应用效果.

  • 加载中
  • 图 1 

    CGAN网络模型

    Figure 1. 

    Sketch of the CGAN

    图 2 

    加入自监督机制后的生成器模型

    Figure 2. 

    Illustration of the generator of the self-supervised CGAN

    图 3 

    不同噪声强度下3种模型相对误差收敛结果

    Figure 3. 

    Relative error convergence results of three models under different noise intensity

    图 4 

    生成器(a)和鉴别器(b)损失对比

    Figure 4. 

    Comparison of the loss functions of the generator (a) and the discriminator (b)

    图 5 

    测试集相对误差对比

    Figure 5. 

    Comparison of relative errors of test set

    图 6 

    2种模型的去噪结果对比分析

    Figure 6. 

    Comparative analysis of denoising results of the two models

    图 7 

    预训练模型与微调模型去噪结果对比分析

    Figure 7. 

    Comparative analysis of denoising results of pre-training model and fine-tuning model

    图 8 

    单炮对比预训练模型与微调模型去噪结果

    Figure 8. 

    Denoising results of the pre-training and fine-tuning models with the shot gather

    图 9 

    自监督迁移学习去噪性能分析

    Figure 9. 

    Performance analysis of self-supervised transfer Learning denoising

    图 10 

    实际地震资料去噪结果对比分析

    Figure 10. 

    Comparative analysis of denoising results of the practical seismic data

    表 1 

    合成地震记录

    Table 1. 

    Synthetic seismogram

    序号 数据名 数据网址
    1 Model94 https://software.seg.org/datasets/2D/Model_1994/
    2 Amoco statics test dataset https://wiki.seg.org/wiki/1994_BP_statics_benchmark_model
    3 BP 2.5D migration benchmark model https://wiki.seg.org/wiki/1997_BP_2.5D_migration_benchmark_model
    4 BP velocity estimation benchmark model https://wiki.seg.org/wiki/2004_BP_velocity_estimation_benchmark_model
    5 BP Anisotropic Velocity Benchmark https://wiki.seg.org/wiki/2007_BP_Anisotropic_Velocity_Benchmark
    下载: 导出CSV
  •  

    Abma R, Claerbout J. 1995. Lateral prediction for noise attenuation by t-x and f-x techniques. Geophysics, 60(6): 1887-1896. doi: 10.1190/1.1443920

     

    Batson J, Royer L. 2019. Noise2Self: blind denoising by self-supervision. //Proceedings of the 36th International Conference on Machine Learning. Long Beach: PMLR, 524-533.

     

    Bekara M, van der Baan M. 2009. Random and coherent noise attenuation by empirical mode decomposition. Geophysics, 74(5): V89-V98. doi: 10.1190/1.3157244

     

    Chen D W, Yang W Y, Wei X J, et al. 2021. Research on first-break automatic picking based on an improved U-Net network. Progress in Geophysics (in Chinese), 36(4): 1493-1503, doi: 10.6038/pg2021EE0235.

     

    Chen Y K, Ma J T. 2014. Random noise attenuation by f-x empirical-mode decomposition predictive filtering. Geophysics, 79(3): V81-V91. doi: 10.1190/geo2013-0080.1

     

    Chen Y K, Ma J W, Fomel S. 2016. Double-sparsity dictionary for seismic noise attenuation. Geophysics, 81(2): V103-V116. doi: 10.1190/geo2014-0525.1

     

    Deng L, Yuan S Y, Wang S X. 2017. Sparse Bayesian learning-based seismic denoise by using physical wavelet as basis functions. IEEE Geoscience and Remote Sensing Letters, 14(11): 1993-1997. doi: 10.1109/LGRS.2017.2745564

     

    Ganin Y, Ustinova E, Ajakan H, et al. 2016. Domain-adversarial training of neural networks. The Journal of Machine Learning Research, 17(1): 2096-2030.

     

    Huang T, Li S J, Jia X, et al. 2021. Neighbor2Neighbor: self-supervised denoising from single noisy images. //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 14776-14785.

     

    Isola P, Zhu J Y, Zhou T H, et al. 2017. Image-to-image translation with conditional adversarial networks. //2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 5967-5976.

     

    Kingma D P, Ba J. 2015. Adam: a method for stochastic optimization. //3rd International Conference on Learning Representations. San Diego: ICLR.

     

    LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553): 436-444. doi: 10.1038/nature14539

     

    Lehtinen J, Munkberg J, Hasselgren J, et al. 2018. Noise2Noise: learning image restoration without clean data. //Proceedings of the 35th International Conference on Machine Learning. Stockholm: PMLR, 2965-2974.

     

    Liu G C, Chen X H. 2013. Noncausal f-x-y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data. Journal of Applied Geophysics, 93: 60-66. doi: 10.1016/j.jappgeo.2013.03.007

     

    Liu G C, Chen X H, Li J Y, et al. 2011. Seismic noise attenuation using nonstationary polynomial fitting. Applied Geophysics, 8(1): 18-26. doi: 10.1007/s11770-010-0244-2

     

    Liu Y, Fomel S, Liu C. 2015. Signal and noise separation in prestack seismic data using velocity-dependent seislet transform. Geophysics, 80(6): WD117-WD128. doi: 10.1190/geo2015-0016.1

     

    Loshchilov I, Hutter F. 2019. Decoupled weight decay regularization. //7th International Conference on Learning Representations. New Orleans: ICLR.

     

    Ma H T, Yao H Y, Li Y, et al. 2020. Deep residual encoder-decoder networks for desert seismic noise suppression. IEEE Geoscience and Remote Sensing Letters, 17(3): 529-533. doi: 10.1109/LGRS.2019.2925062

     

    Neelamani R, Baumstein A, Ross W S. 2010. Adaptive subtraction using complex-valued curvelet transforms. Geophysics, 75(4): V51-V60. doi: 10.1190/1.3453425

     

    Qiu C Y, Wu B Y, Liu N H, et al. 2021. Deep learning prior model for unsupervised seismic data random noise attenuation. IEEE Geoscience and Remote Sensing Letters, 19: 7502005, doi: 10.1109/LGRS.2021.3053760.

     

    Reddi S J, Kale S, Kumar S. 2018. On the convergence of Adam and beyond. //6th International Conference on Learning Representations. Vancouver : ICLR.

     

    Saad O M, Chen Y K. 2020. Deep denoising autoencoder for seismic random noise attenuation. Geophysics, 85(4): V367-V376. doi: 10.1190/geo2019-0468.1

     

    Shi Z Z, Zhou H L, Xia Y Q, et al. 2020. Random noise attenuation of common offset gathers using iteratively reweighted 2, 1norm minimization. IEEE Geoscience and Remote Sensing Letters, 17(11): 1988-1992. doi: 10.1109/LGRS.2019.2960294

     

    Si X, Yuan Y J, Si T H, et al. 2019. Attenuation of random noise using denoising convolutional neural networks. Interpretation, 7(3): SE269-SE280. doi: 10.1190/INT-2018-0220.1

     

    Tian Y N, Li Y, Lin H B, et al. 2013. A sparse NMF-SU for seismic random noise attenuation. IEEE Geoscience and Remote Sensing Letters, 10(3): 607-611. doi: 10.1109/LGRS.2012.2215835

     

    Tzeng E, Hoffman J, Zhang N, et al. 2014. Deep domain confusion: maximizing for domain invariance. arXiv: 1412.3474.

     

    Wang Y Q, Lu W K, Liu J L, et al. 2019. Random seismic noise attenuation based on data augmentation and CNN. Chinese Journal of Geophysics (in Chinese), 62(1): 421-433, doi: 10.6038/cjg2019M0385.

     

    Wei R Q, Garcia C, El-Sayed A, et al. 2020. Variations in variational autoencoders-a comparative evaluation. IEEE Access, 8: 153651-153670. doi: 10.1109/ACCESS.2020.3018151

     

    Yang Q, Zhang Y, Dai W Y, et al. 2020. Transfer Learning (in Chinese). Zhuang F Z Trans. Beijing: China Machine Press.

     

    You J C, Xue Y J, Cao J X, et al. 2020. Attenuation of seismic swell noise using convolutional neural networks in frequency domain and transfer learning. Interpretation, 8(4): T941-T952. doi: 10.1190/INT-2019-0303.1

     

    Yu S W, Ma J W. 2018. Deep learning for attenuating random and coherence noise simultaneously. //88th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Yu S W, Ma J W, Wang W L. 2019. Deep learning for denoising. Geophysics, 84(6): V333-V350. doi: 10.1190/geo2018-0668.1

     

    Zeiler M D, Fergus R. 2014. Visualizing and understanding convolutional networks. //13th European Conference on Computer Vision. Zurich: Springer, 818-833.

     

    Zhang K, Zuo W M, Chen Y J, et al. 2017. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7): 3142-3155. doi: 10.1109/TIP.2017.2662206

     

    Zhang Y S, Lin H B, Li Y, et al. 2019. A patch based denoising method using deep convolutional neural network for seismic image. IEEE Access, 7: 156883-156894. doi: 10.1109/ACCESS.2019.2949774

     

    陈德武, 杨午阳, 魏新建, 等. 2021. 一种基于改进的U-Net网络的初至自动拾取研究. 地球物理学进展, 36(4): 1493-1503, doi: 10.6038/pg2021EE0235. http://www.progeophys.cn/article/doi/10.6038/pg2021EE0235

     

    王钰清, 陆文凯, 刘金林, 等. 2019. 基于数据增广和CNN的地震随机噪声压制. 地球物理学报, 62(1): 421 - 433, doi: 10.6038/cjg2019M0385.

     

    杨强, 张宇, 戴文渊, 等. 2020. 迁移学习. 庄福振译. 北京: 机械工业出版社.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  1012
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2022-02-27
修回日期:  2022-08-13
刊出日期:  2023-02-20

目录