基于P波接收函数资料的华南大陆东部地壳结构研究

聂仕潭, 段永红, 谭萍, 檀玉娟, 赵延娜. 2023. 基于P波接收函数资料的华南大陆东部地壳结构研究. 地球物理学报, 66(10): 4149-4161, doi: 10.6038/cjg2023R0183
引用本文: 聂仕潭, 段永红, 谭萍, 檀玉娟, 赵延娜. 2023. 基于P波接收函数资料的华南大陆东部地壳结构研究. 地球物理学报, 66(10): 4149-4161, doi: 10.6038/cjg2023R0183
NIE ShiTan, DUAN YongHong, TAN Ping, TAN YuJuan, ZHAO YanNa. 2023. Crustal structure in eastern areas of South China block based on P-wave receiver functions. Chinese Journal of Geophysics (in Chinese), 66(10): 4149-4161, doi: 10.6038/cjg2023R0183
Citation: NIE ShiTan, DUAN YongHong, TAN Ping, TAN YuJuan, ZHAO YanNa. 2023. Crustal structure in eastern areas of South China block based on P-wave receiver functions. Chinese Journal of Geophysics (in Chinese), 66(10): 4149-4161, doi: 10.6038/cjg2023R0183

基于P波接收函数资料的华南大陆东部地壳结构研究

  • 基金项目:

    国家自然科学基金青年基金项目(42204063,41174052),河北省自然科学基金项目(D2020512005)资助

详细信息
    作者简介:

    聂仕潭, 男, 1991年生, 博士后, 主要从事壳幔结构研究.E-mail: xiaonie@mail.iggcas.ac.cn

    通讯作者: 段永红, 男, 1963年生, 研究员, 主要从事大陆动力学的地震学探测和研究.E-mail: yhduan123@126.com
  • 中图分类号: P315, P313

Crustal structure in eastern areas of South China block based on P-wave receiver functions

More Information
  • 华南大陆是由扬子块体和华夏块体拼合而成,并经历了多期次的后期改造,研究块体间的深部结构差异对于理解华南大陆的构造演化历史具有重要意义.本文基于布设在华南大陆东部的流动宽频带地震台阵资料,计算了远震事件的P波径向接收函数,并利用Pms谐波分析方法获得了地壳各向异性分布.结果显示,研究区地壳各向异性具有明显的横向分段特征.JSF(江绍断裂带)附近与断裂带走向一致的地壳各向异性快波方向指示断裂带可能切穿整个地壳.在大别造山带、扬子块体和华夏块体南部,地壳各向异性快波方向与区域主压应力方向近垂直,指示该区域地壳变形可能受菲律宾海板块俯冲和太平洋板片俯冲后撤的远程效应的影响.此外,本文利用新的H-κ-c叠加方法获得了测线下方地壳厚度及平均波速比.结果显示,扬子块体的地壳厚度薄于两侧的华夏块体和大别造山带,速度比也较低(约1.7),指示地壳以长英质和酸性岩石为主.Airy地壳均衡理论预测的地壳厚度指示29°N以南的地壳密度要低于以北的区域.以南的低密度及低波速比可能与菲律宾海板块北西向俯冲和太平洋板块西向俯冲后撤导致的地壳物质垂向分异拆沉有关.

  • 加载中
  • 图 1 

    研究区构造背景及本文所用宽频带地震台站和地震事件分布

    Figure 1. 

    Tectonic setting in the study area and the distribution of the broadband seismic stations and seismic events

    图 2 

    Pms震相拟合实例

    Figure 2. 

    The examples of Pms fitting

    图 3 

    测线下方地壳各向异性分布

    Figure 3. 

    Crustal anisotropy of the seismic array

    图 4 

    H-κ方法和H-κ-c叠加方法的对比

    Figure 4. 

    The comparison of H-κ and H-κ-c stacking method

    图 5 

    整条测线下方地壳各向异性分裂时差(a),快波偏振方向(b),(c)H-κ-c分析中谐波校正后各台站的叠加接收函数,地壳厚度(d)和平均VP/VS值(e)

    Figure 5. 

    The anisotropic parameters of splitting time (a), the fast polarization directions (b), (c) stacked receiver functions at each station after the harmonic correction in the H-κ-c analysis, the crustal thickness (d), and the average VP/VS values (e)

    表 1 

    研究区各台站下方地壳厚度、波速比和各向异性参数

    Table 1. 

    Crustal thickness, VP/VS ratio and anisotropy parameters under each station in the study area

    构造区 台站 经度(°) 纬度(°) 地壳厚度(km) 波速比 φ(°) δt(s)
    大别造山带 9C74 115.36 30.88 35.4±1.5 1.74±0.04 175 0.4
    9A80 115.41 30.71 34.0±2.0 1.77±0.05 135 0.1
    9BFF 115.46 30.57 33.0±2.8 1.75±0.05 - -
    9C85 115.51 30.46 33.5±2.0 1.74±0.04 150 0.4
    B394 115.52 30.36 32.6±2.3 1.73±0.05 170 0.06
    9BFA 115.50 30.29 32.5±2.1 1.73±0.05 105 0.1
    9A0D 115.50 30.17 32.5±3.0 1.73±0.06 - -
    9B19 115.54 30.08 32.9±1.7 1.73±0.05 110 0.06
    扬子块体 9B6C 115.45 29.96 32.0±1.9 1.80±0.05 150 0.3
    9A48 115.47 29.89 31.0±4.5 1.81±0.05 100 0.3
    B554 115.45 29.75 32.4±2.2 1.78±0.05 130 0.2
    9B8F 115.47 29.63 33.1±2.4 1.81±0.05 160 0.46
    B55A 115.48 29.52 34.5±1.1 1.68±0.03 170 0.45
    sp06 115.52 29.40 30.0±2.3 1.78±0.05 80 0.14
    sp05 115.52 29.29 32±1.2 1.75±0.04 115 0.45
    sp04 115.59 29.16 32±1.3 1.68±0.03 160 0.46
    sp03 115.64 29.01 32±2.2 1.71±0.04 - -
    sp02 115.63 28.93 32±1.3 1.69±0.03 35 0.1
    sp01 115.66 28.83 30±1.8 1.69±0.05 155 0.4
    sc01 115.65 28.70 30.5±1 1.65±0.03 155 0.46
    sc02 115.68 28.66 29.5±1.5 1.7±0.04 75 0.14
    sc03 115.71 28.54 29.1±1.3 1.75±0.05 75 0.14
    sc04 115.70 28.46 30±2.1 1.69±0.06 45 0.4
    sc05 115.66 28.32 29±1.3 1.75±0.04 65 0.46
    sc06 115.65 28.21 28.9±3.7 1.76±0.07 - -
    sc07 115.71 28.08 31.1±2.7 1.69±0.05 105 0.14
    sc08 115.71 27.98 30.5±1.6 1.73±0.05 55 0.46
    sc09 115.72 27.88 30.5±2.9 1.75±0.05 - -
    sc10 115.83 27.82 31.4±1.1 1.68±0.04 75 0.34
    华夏块体 sc11 115.83 27.72 29.5±2.2 1.79±0.04 85 0.06
    sc12 115.86 27.65 33.1±2.2 1.68±0.05 100 0.3
    sc13 115.86 27.59 32.9±2.6 1.71±0.05 30 0.4
    sc14 115.80 27.49 33.9±2.9 1.66±0.07 80 0.4
    sc15 115.87 27.34 29.4±2.9 1.78±0.07 125 0.45
    sc16 115.89 27.29 31.3±4.4 1.72±0.05 95 0.24
    sc17 115.93 27.19 31.3±1 1.74±0.03 80 0.46
    sc18 115.95 27.09 30.5±3.6 1.74±0.06 - -
    sc19 116.06 27.03 30.6±3.3 1.76±0.06 - -
    sc20 116.09 26.98 32±2.6 1.7±0.06 70 0.24
    sc21 116.17 26.91 30.5±2.3 1.76±0.06 100 0.45
    sc22 116.25 26.86 31.9±2.1 1.69±0.05 125 0.46
    sc23 116.37 26.79 31.6±2.6 1.71±0.04 50 0.06(<0.1)
    sc24 116.39 26.73 30.5±1.9 1.76±0.05 125 0.45
    sc25 116.49 26.65 32.1±1.7 1.71±0.04 90 0.34
    sc26 116.54 26.59 33.5±3 1.69±0.05 80 0.46
    sc27 116.65 26.56 32.5±1.6 1.73±0.06 90 0.45
    sc28 116.71 26.49 32.5±2.7 1.73±0.07 75 0.46
    sc29 116.75 26.41 33±3.4 1.71±0.05 - -
    C68 116.79 26.40 33.5±1.9 1.69±0.04 125 0.2
    HN01 116.82 26.30 31±2 1.75±0.05 50 0.34
    HN02 116.95 26.14 31.5±2.5 1.75±0.05 160 0.45
    HN03 117.19 26.05 33.4±1.5 1.64±0.04 150 0.46
    HN04 117.48 25.89 32±2.3 1.74±0.05 - -
    HN05 117.67 25.77 32±1.2 1.73±0.03 155 0.4
    HN06 117.86 25.64 32.5±1.7 1.72±0.04 170 0.4
    HN07 118.02 25.45 31.6±1.7 1.75±0.05 165 0.45
    HN08 118.20 25.34 32.5±1.5 1.67±0.04 0 0.46
    HN09 118.40 25.16 31.9±1.9 1.7±0.05 0 0.2
    HN10 118.57 25.04 29.5±1.5 1.78±0.03 145 0.2
    下载: 导出CSV
  •  

    An M J, Shi Y L. 2006. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors, 159(3-4): 257-266. doi: 10.1016/j.pepi.2006.08.002

     

    Crampin S. 1987. Geological and industrial implications of extensive-dilatancy anisotropy. Nature, 328(6130): 491-496. doi: 10.1038/328491a0

     

    Deng Y F, Fan W M, Zhang Z J, et al. 2013. Geophysical evidence on segmentation of the Tancheng-Lujiang fault and its implications on the lithosphere evolution in East China. Journal of Asian Earth Sciences, 78: 263-276. doi: 10.1016/j.jseaes.2012.11.006

     

    Deng Y F, Chen L, Xu T, et al. 2017. Lateral variation in seismic velocities and rheology beneath the Qinling-Dabie orogen. Science China Earth Sciences, 60(3): 576-588. doi: 10.1007/s11430-016-0101-6

     

    Deng Y F, Levandowski W. 2018. Lithospheric alteration, intraplate crustal deformation, and topography in eastern China. Tectonics, 37(11): 4120-4134. doi: 10.1029/2018TC005079

     

    Dong S W, Sun X Z, Zhang Y, et al. 1993. Basic structure of Dabieshan collision orogenic belt. Chinese Science Bulletin (in Chinese), 38(6): 542-545. doi: 10.1360/csb1993-38-6-542

     

    Ernst W G, Liou J G, Coleman R G. 1995. Comparative petrotectonic study of five Eurasian ultrahigh-pressure metamorphic complexes. International Geology Review, 37(3): 191-211. doi: 10.1080/00206819509465400

     

    Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112(B8): B08416, doi: 10.1029/2005JB004120.

     

    Gao Y, Crampin S. 2004. Observations of stress relaxation before earthquakes. Geophysical Journal International, 157(2): 578-582. doi: 10.1111/j.1365-246X.2004.02207.x

     

    Gao Y, Wu J, Cai J A, et al. 2009. Shear-wave splitting in the southeast of Cathaysia block, South China. Journal of Seismology, 13(2): 267-275. doi: 10.1007/s10950-008-9126-y

     

    Gao Y, Wu J, Yi G X, et al. 2010. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy. Chinese Science Bulletin, 55(31): 3599-3605. doi: 10.1007/s11434-010-4135-y

     

    Gao Y, Wu J, Fukao Y, et al. 2011. Shear wave splitting in the crust in North China: stress, faults and tectonic implications. Geophysical Journal International, 187(2): 642-654. doi: 10.1111/j.1365-246X.2011.05200.x

     

    Hu X P, Zang A, Heidbach O, et al. 2017. Crustal stress pattern in China and its adjacent areas. Journal of Asian Earth Sciences, 149: 20-28. doi: 10.1016/j.jseaes.2017.07.005

     

    Jiang G Z, Tang X Y, Rao S, et al. 2016. High-quality heat flow determination from the crystalline basement of the south-east margin of North China Craton. Journal of Asian Earth Sciences, 118: 1-10. doi: 10.1016/j.jseaes.2016.01.009

     

    Kong F S, Wu J, Liu K H, et al. 2016. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas. Earth and Planetary Science Letters, 442: 72-79. doi: 10.1016/j.epsl.2016.03.003

     

    Lei J S, Zhao D P, Xu X W, et al. 2020. P-wave upper-mantle tomography of the Tanlu fault zone in eastern China. Physics of the Earth and Planetary Interiors, 299: 106402, doi: 10.1016/j.pepi.2019.106402.

     

    Li C, Yao H J, Yang Y, et al. 2020. 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications. Earth and Planetary Physics, 4(3): 317-328.

     

    Li J T, Song X D, Wang P, et al. 2019. A generalized H-κ method With harmonic corrections on Ps and its crustal multiples in receiver functions. Journal of Geophysical Research: Solid Earth, 124(4): 3782-3801. doi: 10.1029/2018JB016356

     

    Li Q S, Gao R, Wu F T, et al. 2013. Seismic structure in the southeastern China using teleseismic receiver functions. Tectonophysics, 606: 24-35. doi: 10.1016/j.tecto.2013.06.033

     

    Li Y H, Gao M T, Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics, 611: 51-60. doi: 10.1016/j.tecto.2013.11.019

     

    Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1

     

    Ligorría J P, Ammon C J. 1999. Iterative deconvolution and receiver- function estimation. Bulletin of the Seismological Society of America, 89(5): 1395-1400. doi: 10.1785/BSSA0890051395

     

    Liu H F, Niu F L. 2012. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data. Geophysical Journal International, 188(1): 144-164. doi: 10.1111/j.1365-246X.2011.05249.x

     

    Liu Z, Tian X B, Liang X F, et al. 2021. Magmatic underplating thickening of the crust of the southern Tibetan Plateau inferred from receiver function analysis. Geophysical Research Letters, 48(17): e2021GL093754, doi: 10.1029/2021GL093754.

     

    Lombardi D, Braunmiller J, Kissling E, et al. 2008. Moho depth and Poisson′s ratio in the Western-Central Alps from receiver functions. Geophysical Journal International, 173(1): 249-264. doi: 10.1111/j.1365-246X.2007.03706.x

     

    Mao J R, Li Z L, Ye H M. 2014. Mesozoic tectono-magmatic activities in south China: Retrospect and prospect. Science China Earth Sciences, 57(12): 2853-2877. doi: 10.1007/s11430-014-5006-1

     

    Peng J, Huang J L, Liu Z K, et al. 2020. Constraints on S-wave velocity structures of the lithosphere in mainland China from broadband ambient noise tomography. Physics of the Earth and Planetary Interiors, 299: 106406, doi: 10.1016/j.pepi.2019.106406.

     

    Qiu N S, Su X G, Li Z Y, et al. 2007. The Cenozoic tectono-thermal evolution of depressions along both sides of mid-segment of Tancheng-Lujiang Fault Zone, East China. Chinese Journal of Geophysics (in Chinese), 50(5): 1497-1507. doi: 10.3321/j.issn:0001-5733.2007.05.026

     

    Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?. Reviews of Geophysics, 37(1): 65-106. doi: 10.1029/98RG02075

     

    Shi Y T, Gao Y. 2022. Spatial distribution of shear wave splitting of the upper crust in the central South China Block. Chinese Journal of Geophysics (in Chinese), 65(9): 3268-3279, doi: 10.6038/cjg2022P0741.

     

    Shu L S, Wang B, Cawood P A, et al. 2015. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China. Tectonics, 34(8): 1600-1621. doi: 10.1002/2015TC003835

     

    Silver P G. 1996. Seismic anisotropy beneath the continents: probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24: 385-432. doi: 10.1146/annurev.earth.24.1.385

     

    Song P H, Zhang X M, Liu Y S, et al. 2017. Moho imaging based on receiver function analysis with teleseismic wavefield reconstruction: Application to South China. Tectonophysics, 718: 118-131. doi: 10.1016/j.tecto.2017.05.031

     

    Sun Y J, Dong S W, Zhang H, et al. 2013. 3D thermal structure of the continental lithosphere beneath China and adjacent regions. Journal of Asian Earth Sciences, 62: 697-704. doi: 10.1016/j.jseaes.2012.11.020

     

    Tan P, Nie S T. 2021. Crustal deformation in eastern margin of Tibetan Plateau from a dense linear seismic array. Physics of the Earth and Planetary Interiors, 321: 106801, doi: 10.1016/j.pepi.2021.106801.

     

    Tang Y C, Obayashi M, Niu F L, et al. 2014. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nature Geoscience, 7(6): 470-475. doi: 10.1038/ngeo2166

     

    Tatham D J, Lloyd G E, Butler R W H, et al. 2008. Amphibole and lower crustal seismic properties. Earth and Planetary Science Letters, 267(1-2): 118-128. doi: 10.1016/j.epsl.2007.11.042

     

    Teng J W, Zhang Z J, Zhang X K, et al. 2013. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles. Tectonophysics, 609: 202-216. doi: 10.1016/j.tecto.2012.11.024

     

    Tian X B, Teng J W, Zhang H S, et al. 2011. Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis. Physics of the Earth and Planetary Interiors, 184(3-4): 186-193. doi: 10.1016/j.pepi.2010.11.007

     

    Tian X B, Bai Z M, Klemperer S L, et al. 2021. Crustal-scale wedge tectonics at the narrow boundary between the Tibetan Plateau and Ordos block. Earth and Planetary Science Letters, 554: 116700, doi: 10.1016/j.epsl.2020.116700.

     

    Wang C Y, Zhu L P, Lou H, et al. 2010a. Crustal thicknesses and Poisson′s ratios in the eastern Tibetan Plateau and their tectonic implications. Journal of Geophysical Research: Solid Earth, 115(B11): B11301, doi: 10.1029/2010JB007527.

     

    Wang P, Wang L S, Mi N, et al. 2010b. Crustal thickness and average VP/VS ratio variations in southwest Yunnan, China, from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 115(B11): B11308, doi: 10.1029/2009JB006651.

     

    Wu C L, Tian X B, Xu T, et al. 2019. Deformation of crust and upper mantle in central Tibet caused by the northward subduction and slab tearing of the Indian lithosphere: New evidence based on shear wave splitting measurements. Earth and Planetary Science Letters, 514: 75-83. doi: 10.1016/j.epsl.2019.02.037

     

    Wu J, Gao Y, Cai J A, et al. 2007. Preliminary study on seismic anisotropy in the crust in southeast of Cathaysia Block. Chinese Journal of Geophysics (in Chinese), 50(6): 1748-1756.

     

    Xie F R, Cui X F, Zhao J T, et al. 2004. Regional division of the recent tectonic stress field in China and adjacent areas. Chinese Journal of Geophysics (in Chinese), 47(4): 654-662.

     

    Xu J R, Zhao Z X. 2004. Regional structure characteristics of crustal root of mountain beneath the Sulu orogenic belt. Acta Petrologica Sinica (in Chinese), 20(1): 149-156.

     

    Yang M G, Huang S B, Lou F S, et al. 2009. Lithospheric structure and large-scale metallogenic process in southeast China Continental area. Geology in China (in Chinese), 36(3): 528-543.

     

    Yang W C. 2003. Deep structures of the east Dabie ultrahigh-pressure metamorphic belt, East China. Science in China Series D: Earth Sciences, 46(6): 612-624. doi: 10.1007/BF02984539

     

    Yang X Y, Li Y H. 2021. Crustal thicknesses and VP/VS ratios beneath South China estimated from receiver function analysis and their geological implications. Chinese Journal of Geophysics (in Chinese), 64(1): 146-156, doi: 10.6038/cjg2021N0320.

     

    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan- Tibetan orogen. Annu. Rev. Earth Planet. Sci. , 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211

     

    Yuan X H, Ni J, Kind R, et al. 1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. Journal of Geophysical Research: Solid Earth, 102(B12): 27491-27500. doi: 10.1029/97JB02379

     

    Zandt G, Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson′s ratio. Nature, 374(6518): 152-154. doi: 10.1038/374152a0

     

    Zhang G W, Guo A L, Wang Y J, et al. 2013. Tectonics of South China continent and its implications. Science China Earth Sciences, 56(11): 1804-1828. doi: 10.1007/s11430-013-4679-1

     

    Zhang J D, Yang X Y, Liu C Z, et al. 2012. The fine deep structure of the northern margin of the Dabie Orogenic Belt from gravity- magnetic-electrical-seismic combination survey. Chinese Journal of Geophysics (in Chinese), 55(7): 2292-2306, doi: 10.6038/j.issn.0001-5733.2012.07.015.

     

    Zhang R Y, Liou J G, Ernst W G. 2009. The Dabie-Sulu continental collision zone: a comprehensive review. Gondwana Research, 16(1): 1-26. doi: 10.1016/j.gr.2009.03.008

     

    Zhang S B, Zheng Y F. 2013. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Research, 23(4): 1241-1260. doi: 10.1016/j.gr.2012.09.005

     

    Zhang Y Y, Chen L, Ai Y S, et al. 2018. Lithospheric structure of the South China block from S-receiver function. Chinese Journal of Geophysics (in Chinese), 61(1): 138-149, doi: 10.6038/cjg2018L0226.

     

    Zhao G C, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13-54. doi: 10.1016/j.precamres.2012.09.017

     

    Zhao Z X, Xu J R. 2009. Three-dimensional crustal velocity structure of P-wave in East China from wide-angle reflection and refraction surveys. Chinese Science Bulletin, 54(8): 1389-1397. doi: 10.1007/s11434-009-0022-9

     

    Zheng Y F, Xiao W J, Zhao G C. 2013. Introduction to tectonics of China. Gondwana Research, 23(4): 1189-1206. doi: 10.1016/j.gr.2012.10.001

     

    Zhou M W. 2017. Surface wave velocity and azimuthal anisotropy in South China [Master′s thesis] (in Chinese). Beijing: Institute of Earthquake Forecasting, China Earthquake Administration.

     

    Zhu L P, Helmberger D V. 1998. Moho offset across the northern margin of the Tibetan Plateau. Science, 281(5380): 1170-1172. doi: 10.1126/science.281.5380.1170

     

    Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969-2980. doi: 10.1029/1999JB900322

     

    董树文, 孙先知, 张勇等. 1993. 大别山碰撞造山带基本结构. 科学通报, 38(6): 542-545. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199306017.htm

     

    高原, 吴晶, 易桂喜等. 2010. 从壳幔地震各向异性初探华北地区壳幔耦合关系. 科学通报, 55(29): 2837-2843. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201029009.htm

     

    毛建仁, 厉子龙, 叶海敏. 2014. 华南中生代构造-岩浆活动研究: 现状与前景. 中国科学: 地球科学, 44(12): 2593-2617. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201412001.htm

     

    邱楠生, 苏向光, 李兆影等. 2007. 郯庐断裂中段两侧坳陷的新生代构造-热演化特征. 地球物理学报, 50(5): 1497-1507. http://www.geophy.cn/article/id/cjg_530

     

    石玉涛, 高原. 2022. 华南块体中部上地壳剪切波分裂特征. 地球物理学报, 65(9): 3268-3279, doi: 10.6038/cjg2022P0741.

     

    吴晶, 高原, 蔡晋安等. 2007. 华夏地块东南部地壳地震各向异性特征初步研究. 地球物理学报, 50(6): 1748-1756. http://www.geophy.cn/article/id/cjg_224

     

    谢富仁, 崔效锋, 赵建涛等. 2004. 中国大陆及邻区现代构造应力场分区. 地球物理学报, 47(4): 654-662. http://www.geophy.cn/article/id/cjg_1595

     

    徐纪人, 赵志新. 2004. 苏鲁造山带区域地壳山根结构特征. 岩石学报, 20(1): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401012.htm

     

    杨明桂, 黄水保, 楼法生等. 2009. 中国东南陆区岩石圈结构与大规模成矿作用. 中国地质, 36(3): 528-543. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200903006.htm

     

    杨文采. 2003. 东大别超高压变质带的深部构造. 中国科学: D辑, 33(2): 183-192. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200302011.htm

     

    杨晓瑜, 李永华. 2021. 中国华南地区地壳厚度与波速比分布特征及其地质意义. 地球物理学报, 64(1): 146-156, doi: 10.6038/cjg2021N0320.

     

    张国伟, 郭安林, 王岳军等. 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm

     

    张交东, 杨晓勇, 刘成斋等. 2012. 大别山北缘深部结构的高精度重磁电震解析. 地球物理学报, 55(7): 2292-2306, doi: 10.6038/j.issn.0001-5733.2012.07.015.

     

    张耀阳, 陈凌, 艾印双等. 2018. 利用S波接收函数研究华南块体的岩石圈结构. 地球物理学报, 61(1): 138-149, doi: 10.6038/cjg2018L0226.

     

    赵志新, 徐纪人. 2009. 广角反射地震探测得到的中国东部地壳三维P波速度结构. 科学通报, 54(7): 931-937. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200907014.htm

     

    周旻炜. 2017. 华南地区面波速度和方位角各向异性研究[硕士论文]. 北京: 中国地震局地震预测研究所.

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1802
  • PDF下载数:  170
  • 施引文献:  0
出版历程
收稿日期:  2023-03-30
修回日期:  2023-08-03
上线日期:  2023-10-10

目录