波场模拟有限差分参数优化选取

方修政, 姚刚, 钮凤林, 吴迪. 2023. 波场模拟有限差分参数优化选取. 地球物理学报, 66(6): 2520-2533, doi: 10.6038/cjg2022Q0466
引用本文: 方修政, 姚刚, 钮凤林, 吴迪. 2023. 波场模拟有限差分参数优化选取. 地球物理学报, 66(6): 2520-2533, doi: 10.6038/cjg2022Q0466
FANG XiuZheng, YAO Gang, NIU FengLin, WU Di. 2023. Estimating optimal parameters of finite-difference scheme for wavefield modeling. Chinese Journal of Geophysics (in Chinese), 66(6): 2520-2533, doi: 10.6038/cjg2022Q0466
Citation: FANG XiuZheng, YAO Gang, NIU FengLin, WU Di. 2023. Estimating optimal parameters of finite-difference scheme for wavefield modeling. Chinese Journal of Geophysics (in Chinese), 66(6): 2520-2533, doi: 10.6038/cjg2022Q0466

波场模拟有限差分参数优化选取

  • 基金项目:

    中石油集团前瞻性基础性项目"物探岩石物理与前沿储备技术研究"(2022DQ0604-02), 国家自然科学基金项目(41974142, 42074129)和中国石油大学(北京)油气资源与探测国家重点实验室项目(PRP/indep-4-2012)联合资助

详细信息
    作者简介:

    方修政, 男, 博士, 主要从事地震波传播理论与成像.E-mail: fangxiuzheng@live.com

    通讯作者: 吴迪, 女, 博士, 副研究员, 主要从事地震波模拟与成像研究.E-mail: wudi@cup.edu.cn
  • 中图分类号: P631

Estimating optimal parameters of finite-difference scheme for wavefield modeling

More Information
  • 有限差分方法(Finite-difference Method, FD)广泛用于地震波场数值模拟, 但其存在固有的数值频散问题, 影响模拟的计算效率和数值精度.本文主要研究了有限差分方法的空间数值频散误差和网格划分精度以及差分算子的关系, 基于计算量最小准则, 提出了最优化有限差分参数选取流程, 为有限差分数值模拟参数选取提供理论指导.本文主要工作包括: (1) 提出了空间数值频散正变换过程(Forward Space Dispersion Transform, FSDT)方法, 该方法可以高效模拟出不同网格划分精度(波长采样点数)的带有空间数值频散的波场; (2) 提出了波场空间数值频散误差衡量准则, 可以定量地判断出数值模拟导致的波形频散程度, 选取合适的频散误差阈值; (3) 研究了给定空间数值频散误差阈值下, 差分算子系数、差分算子阶数、网格划分精度与计算量之间的关系.文中基于雷米兹交换方法(Remez Exchange Method, RE)和泰勒级数展开方法(Taylor-series Expansion Method, TE)的差分系数, 在空间数值频散误差阈值0.01时, 数值模拟了不同差分算子阶数、网格划分精度与计算量的关系, 并给出了有限差分参数选取的参考值.

  • 加载中
  • 图 1 

    FSDT方法模拟的2阶精度有限差分空间数值频散示意图

    Figure 1. 

    Simulating the spatial dispersion of the second-order accuracy finite-difference by using the FSDT method

    图 2 

    FSDT方法模拟的空间数值频散波场示意图

    Figure 2. 

    The spatially dispersed wavefield simulated by using the FSDT method

    图 3 

    FSDT方法模拟的2阶精度有限差分在不同网格大小下的空间数值频散波场示意图

    Figure 3. 

    The spatially dispersed wavefield simulated by using the FSDT method of 2nd order finite-difference with different grid size

    图 4 

    雷米兹交换算法(RE)和泰勒级数展开方法(TE)的16阶精度空间数值频散曲线示意图

    Figure 4. 

    The numerical dispersion curves of the 16th-order accuracy RE and TE methods

    图 5 

    设定误差阈值下,差分算子阶数、网格大小及计算量的关系图

    Figure 5. 

    The relationship between the orders of FD operators, the grid size, and the computational cost with a fixed error threshold

    图 6 

    计算量最小参数对应的波场快照

    Figure 6. 

    The wavefield snapshot with the parameters of minimum computational cost

    图 7 

    低通滤波的Ricker子波

    Figure 7. 

    A low-pass filtered Ricker wavelet

    图 8 

    设定误差阈值下,差分算子阶数、网格大小及计算量的关系图

    Figure 8. 

    The relationship between the orders of FD operators, the grid size, and the computational cost with a fixed error threshold

    图 9 

    计算量最小对应的波场快照

    Figure 9. 

    The wavefield snapshot with the minimum computational cost

    图 10 

    误差阈值0.01,常规Ricker子波在不同传播距离对应的最小计算量的差分算子阶数和最小波长采样点数

    Figure 10. 

    The orders of FD operators and grid points per shortest wavelength for the minimum computational cost at different propagation distances with an original Ricker wavelet. The error threshold is 0.01

    图 11 

    低通滤波的Ricker子波在不同传播距离对应的最小计算量的差分算子阶数和最小波长采样点数,滤波截止频率为2.5倍主频(即50 Hz),误差阈值0.01

    Figure 11. 

    The orders of FD operators and grid points per shortest wavelength for the minimum computational cost at different propagation distances with a low-pass-filtered Ricker wavelet. The stop frequency is 2.5 times the dominate frequency (i.e., 50 Hz). The error threshold is set to 0.01

    图 12 

    (a) Marmousi速度模型及(b)传播时间1 s的波场快照

    Figure 12. 

    (a) Marmousi velocity model and (b) wavefield snapshot at 1 second

    图 13 

    单道波场记录对比(TE, G=3.18, 2N=16)

    Figure 13. 

    The single trace waveform comparison (TE, G=3.18, 2N=16)

    图 14 

    单道波场记录对比(RE, G=2.7, 2N=16)

    Figure 14. 

    The single trace waveform comparison (RE, G=2.7, 2N=16)

    表 1 

    运算量统计

    Table 1. 

    Number of arithmetic operations

    不同维度方程 加法运算量 乘法运算量
    一维 N+3 N+3
    二维 N+3 N+3
    三维 11×N+3 N+3
    下载: 导出CSV

    表 2 

    2阶偏导数的中心差分算子的雷米兹交换方法差分系数(2N =12~24阶精度)

    Table 2. 

    Remez exchange method FD coefficients of central-difference operator for the second partial derivative (2N=12~24)

    差分系数 精度阶数
    2N=12 2N=14 2N=16 2N=18 2N=20 2N=22 2N=24
    c0 -3.08567404 -3.13546354 -3.17049888 -3.19557676 -3.21402708 -3.22789034 -3.23841242
    c1 1.80490080 1.85080445 1.88374360 1.90764916 1.92541257 1.93885792 1.94911937
    c2 -0.32938272 -0.36521045 -0.39251710 -0.41319258 -0.42902907 -0.44128665 -0.45079990
    c3 0.08448092 0.10784253 0.12764668 0.14379201 0.15682499 0.16730741 0.17567973
    c4 -0.02064818 -0.03304081 -0.04541707 -0.05669729 -0.06654180 -0.07491935 -0.08189626
    c5 0.00389460 0.00897909 0.01546686 0.02241071 0.02917261 0.03539281 0.04087661
    c6 -0.00040840 -0.00185764 -0.00457368 -0.00824342 -0.01240476 -0.01665681 -0.02069872
    c7 0.00021460 0.00103068 0.00262046 0.00485956 0.00749850 0.01026837
    c8 -0.00013053 -0.00063864 -0.00164834 -0.00310188 -0.00484390
    c9 0.00008797 0.00043206 0.00111639 0.00210097
    c10 -0.00006428 -0.00031314 -0.00079756
    c11 0.00004997 0.00023791
    c12 -0.00004041
    下载: 导出CSV
  •  

    Alford R M, Kelly K R, Boore D M. 1974. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 39(6): 834-842, doi: 10.1190/1.1440470.

     

    Amundsen L, Pedersen Ø. 2019. Elimination of temporal dispersion from the finite-difference solutions of wave equations in elastic and anelastic models. Geophysics, 84(2): T47-T58, doi: 10.1190/geo2018-0281.1.

     

    Chen J B. 2007. High-order time discretizations in seismic modeling. Geophysics, 72(5): SM115-SM122, doi: 10.1190/1.2750424.

     

    Dablain M A. 1986. The application of high-order differencing to the scalar wave equation. Geophysics, 51(1): 54-66, doi: 10.1190/1.1442040.

     

    Dai N X, Wu W, Liu H F. 2014. Solutions to numerical dispersion error of time FD in RTM. //SEG Technical Program Expanded Abstracts. SEG, 4027-4031, doi: 10.1190/segam2014-0858.1.

     

    Etgen J T. 2007. A tutorial on optimizing time domain finite-difference schemes: "Beyond Holberg". SEP Report 129, 33-43. http://sepwww.stanford.edu/data/media/public/docs/sep129/john1.pdf

     

    Gao Y J, Zhang J H, Yao Z X. 2016. Third-order symplectic integration method with inverse time dispersion transform for long-term simulation. Journal of Computational Physics, 314: 436-449, doi10.1016/j. jcp. 2016.03.031.

     

    Gazdag J. 1981. Modeling of the acoustic wave equation with transform methods. Geophysics, 46(6): 854-859, doi: 10.1190/1.1441223.

     

    He Z, Zhang J H, Yao Z X. 2019. Determining the optimal coefficients of the explicit finite-difference scheme using the Remez exchange algorithm. Geophysics, 84(3): S137-S147, doi: 10.1190/geo2018-0446.1.

     

    Holberg O. 1987. Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophysical Prospecting, 35(6): 629-655, doi: 10.1111/j.1365-2478.1987.tb00841.x.

     

    Kindelan M, Kamel A, Sguazzero P. 1990. On the construction and efficiency of staggered numerical differentiators for the wave equation. Geophysics, 55(1): 107-110, doi: 10.1190/1.1442763.

     

    Koene E F M, Robertsson J O A, Broggini F, et al. 2018. Eliminating time dispersion from seismic wave modeling. Geophysical Journal International, 213(1): 169-180, doi: 10.1093/gji/ggx563.

     

    Kosloff D, Pestana R C, Tal-Ezer H. 2010. Acoustic and elastic numerical wave simulations by recursive spatial derivative operators. Geophysics, 75(6): T167-T174, doi: 10.1190/1.3485217.

     

    Kosloff D D, Baysal E. 1982. Forward modeling by a Fourier method. Geophysics, 47(10): 1402-1412, doi: 10.1190/1.1441288.

     

    Li Q Y, Wu G C, Wu J L, et al. 2019. Finite difference seismic forward modeling method for fluid-solid coupled media with irregular seabed interface. Journal of Geophysics and Engineering, 16(1): 198-214, doi: 10.1093/jge/gxy017.

     

    Li Y E, Wong M, Clapp R. 2016. Equivalent accuracy at a fraction of the cost: Overcoming temporal dispersion. Geophysics, 81(5): T189-T196, doi; 10.1190/GEO2015-0398.1. http://www.nstl.gov.cn/paper_detail.html?id=fdb53a6d8dd9874a4caac5a3d4836080

     

    Liu Y, Sen M K. 2011. Finite-difference modeling with adaptive variable-length spatial operators. Geophysics, 76(4): T79-T89, doi: 10.1190/1.3587223.

     

    Liu Y. 2013. Globally optimal finite-difference schemes based on least squares. Geophysics, 78(4): T113-T132, doi: 10.1190/geo2012-0480.1.

     

    Liu Y. 2014. Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophysical Journal International, 197(2): 1033-1047, doi: 10.1093/gji/ggu032.

     

    Liu Y. 2020. Acoustic and elastic finite-difference modeling by optimal variable-length spatial operators. Geophysics, 85(2): T57-T70, doi: 10.1190/geo2019-0145.1.

     

    Miao Z Z, Zhang J H. 2020. Reducing error accumulation of optimized finite-difference scheme using the minimum norm. Geophysics, 85(5): T275-T291, doi: 10.1190/GEO2019-0758.1.

     

    Miao Z Z, Zhang J H. 2022. Optimizing finite-difference scheme in multidirections on rectangular grids based on the minimum norm. Geophysics, 87(4): F41-F54, doi: 10.1190/GEO2021-0283.1.

     

    Mittet R. 2019. Second-order time integration of the wave equation with dispersion correction procedures. Geophysics, 84(4): T221-T235, doi: 10.1190/geo2018-0770.1.

     

    Ren Z M, Dai X, Bao Q Z, et al. 2021. Time and space dispersion in finite difference and its influence on reverse time migration and full-waveform inversion. Chinese Journal of Geophysics (in Chinese), 64(11): 4166-4180, doi: 10.6038/cjg2021P0041.

     

    Ren Z M, Dai X, Bao Q Z. 2022. Source wavefield reconstruction based on an implicit staggered-grid finite-difference operator for seismic imaging. Petroleum Science, 19(5): 2095-2106, doi: 10.1016/j.petsci.2022.05.008.

     

    Reshef M, Kosloff D, Edwards M, et al. 1988. Three-dimensional acoustic modeling by the Fourier method. Geophysics, 53(9): 1175-1183, doi: 10.1190/1.1442557.

     

    Stork C. 2013. Eliminating nearly all dispersion error from FD modeling and RTM with minimal cost increase. //75th EAGE Conference and Exhibition. EAGE, doi: 10.3997/2214-4609.20130478.

     

    Tal-Ezer H. 1986. Spectral methods in time for hyperbolic equations. SIAM Journal on Numerical Analysis, 23(1): 11-26, doi: 10.1137/0723002.

     

    Tal-Ezer H, Kosloff D, Koren Z. 1987. An accurate scheme for seismic forward modelling. Geophysical Prospecting, 35(5): 479-490, doi: 10.1111/j.1365-2478.1987.tb00830.x.

     

    Virieux J. 1984. SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 49(11): 1933-1942, doi: 10.1190/1.1441605.

     

    Virieux J, Operto S. 2009. An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6): WCC1-WCC26, doi: 10.1190/1.3238367.

     

    Wang M X, Xu S. 2015. Finite-difference time dispersion transforms for wave propagation. Geophysics, 80(6): WD19-WD25, doi: 10.1190/geo2015-0059.1.

     

    Wang W H, Wen X T, Tang C, et al. 2021. Variable-order optimal implicit finite-difference schemes for explicit time-marching solutions to wave equations. Geophysics, 86(2): T91-T106, doi: 10.1190/GEO2020-0239.1.

     

    Wang J, Liu Y, Zhou H Y. 2023. Temporal and spatial high-order accuracy implicit finite-difference method for modeling acoustic wave equation on rectangular staggered-grid. Chinese Journal of Geophysics (in Chinese), 66(1): 368-382, doi: 10.6038/cjg2022P0778.

     

    Warner M, Ratcliffe A, Nangoo T, et al. 2013. Anisotropic 3D full-waveform inversion. Geophysics, 78(2): R59-R80, doi: 10.1190/geo2012-0338.1.

     

    Wu B, Yao G, Cao J J, et al. 2022. Huber inversion-based reverse-time migration with de-primary imaging condition and curvelet-domain sparse constraint. Petroleum Science, 19(4): 1542-1554, doi: 10.1016/j.petsci.2022.03.004.

     

    Xu W H, Gao J H. 2018. Adaptive 9-point frequency-domain finite difference scheme for wavefield modeling of 2D acoustic wave equation. Journal of Geophysics and Engineering, 15(4): 1432-1445, doi: 10.1088/1742-2140/aab015.

     

    Xu S G, Bao Q Z, Ren Z M, et al. 2022. Simulating elastic wave using temporal high accuracy and implicit spatial rectangular staggered-grid finite-difference approaches. Chinese Journal of Geophysics (in Chinese), 65(4): 1389-1401, doi: 10.6038/cjg2022P0168.

     

    Yang L, Yan H Y, Liu H. 2017. Optimal staggered-grid finite-difference schemes based on the minimax approximation method with the Remez algorithm. Geophysics, 82(1): T27-T42, doi: 10.1190/geo2016-0171.1.

     

    Yao G, Wu D, Debens H A. 2016. Adaptive finite difference for seismic wavefield modelling in acoustic media. Scientific Reports, 6(1): 30302, doi: 10.1038/srep30302.

     

    Yao G, Wu D, Wang S X. 2020. A review on reflection-waveform inversion. Petroleum Science, 17(2): 334-351, doi: 10.1007/s12182-020-00431-3.

     

    Zhang J H, Yao Z X. 2013a. Optimized finite-difference operator for broadband seismic wave modeling. Geophysics, 78(1): A13-A18, doi: 10.1190/geo2012-0277.1.

     

    Zhang J H, Yao Z X. 2013b. Optimized explicit finite-difference schemes for spatial derivatives using maximum norm. Journal of Computational Physics, 250: 511-526, doi: 10.1016/j.jcp.2013.04.029.

     

    Zhang Y, Zhang H Z, Zhang G Q. 2011. A stable TTI reverse time migration and its implementation. Geophysics, 76(3): WA3-WA11, doi: 10.1190/1.3554411.

     

    Zhang Y B, Liu Y K, Yi J, et al. 2021. First-order multiples imaging aided by water bottom. Petroleum Science, 18(6): 1650-1661, doi: 10.1016/j.petsci.2021.09.036.

     

    Zhao Y, Niu F L, Fu L, et al. 2021. Local events-based fast RTM surface-offset gathers via dip-guided interpolation. Petroleum Science, 18(3): 773-782, doi: 10.1007/s12182-021-00557-y.

     

    Zhou H B, Zhang G Q. 2011. Prefactored optimized compact finite-difference schemes for second spatial derivatives. Geophysics, 76(5): WB87-WB95, doi: 10.1190/geo2011-0048.1.

     

    Zou Q, Huang J P, Yong P, et al. 2020. 3D elastic waveform modeling with an optimized equivalent staggered-grid finite-difference method. Petroleum Science, 17(4): 967-989, doi: 10.1007/s12182-020-00477-3.

     

    任志明, 戴雪, 包乾宗等. 2021. 有限差分的时间和空间频散及其对逆时偏移和全波形反演的影响. 地球物理学报, 64(11): 4166-4180, doi: 10.6038/cjg2021P0041. http://www.geophy.cn/article/doi/10.6038/cjg2021P0041

     

    王静, 刘洋, 周泓宇. 2023. 时间-空间高阶精度矩形交错网格隐式有限差分声波正演模拟. 地球物理学报, 66(1): 368-382, doi: 10.6038/cjg2022P0778. http://www.geophy.cn/article/doi/10.6038/cjg2022P0778

     

    徐世刚, 包乾宗, 任志明等. 2022. 基于时间高精度-空间隐式矩形交错网格有限差分的弹性波数值模拟. 地球物理学报, 65(4): 1389-1401, doi: 10.6038/cjg2022P0168. http://www.geophy.cn/article/doi/10.6038/cjg2022P0168

  • 加载中

(14)

(2)

计量
  • 文章访问数:  2218
  • PDF下载数:  226
  • 施引文献:  0
出版历程
收稿日期:  2022-06-17
修回日期:  2022-10-19
上线日期:  2023-06-10

目录