晚更新世以来南海中央海盆沉积物的磁学特征: 对物源和东亚季风演化的指示

陈龙, 陈亮, 殷征欣, 官玉龙, 章钰桢, 李国山, 姜兆霞. 2023. 晚更新世以来南海中央海盆沉积物的磁学特征: 对物源和东亚季风演化的指示. 地球物理学报, 66(8): 3557-3575, doi: 10.6038/cjg2022Q0418
引用本文: 陈龙, 陈亮, 殷征欣, 官玉龙, 章钰桢, 李国山, 姜兆霞. 2023. 晚更新世以来南海中央海盆沉积物的磁学特征: 对物源和东亚季风演化的指示. 地球物理学报, 66(8): 3557-3575, doi: 10.6038/cjg2022Q0418
CHEN Long, CHEN Liang, YIN ZhengXin, GUAN YuLong, ZHANG YuZhen, LI GuoShan, JIANG ZhaoXia. 2023. Magnetic characteristics of sediments from the central basin of the South China Sea since the late Pleistocene: Implications for sediments provenance and evolution of the East Asian monsoon. Chinese Journal of Geophysics (in Chinese), 66(8): 3557-3575, doi: 10.6038/cjg2022Q0418
Citation: CHEN Long, CHEN Liang, YIN ZhengXin, GUAN YuLong, ZHANG YuZhen, LI GuoShan, JIANG ZhaoXia. 2023. Magnetic characteristics of sediments from the central basin of the South China Sea since the late Pleistocene: Implications for sediments provenance and evolution of the East Asian monsoon. Chinese Journal of Geophysics (in Chinese), 66(8): 3557-3575, doi: 10.6038/cjg2022Q0418

晚更新世以来南海中央海盆沉积物的磁学特征: 对物源和东亚季风演化的指示

  • 基金项目:

    崂山实验室科技创新项目"基于数字孪生的全球深时地貌重塑与资源环境预测(LSKJ202204400);国家自然科学基金项目(42274089和42121005);山东省杰出青年基金项目(ZR2022JQ16)资助

详细信息
    作者简介:

    陈龙, 男, 1997年生, 硕士研究生, 地质学专业, 主要从事海洋沉积物环境磁学的研究.E-mail: chenlong6397@stu.ouc.edu.cn

    通讯作者: 姜兆霞, 女, 1987年生, 教授, 主要从事环境磁学研究.E-mail: jiangzhaoxia@ouc.edu.cn
  • 中图分类号: P318

Magnetic characteristics of sediments from the central basin of the South China Sea since the late Pleistocene: Implications for sediments provenance and evolution of the East Asian monsoon

More Information
  • 南海沉积物记录了丰富的高原隆升剥蚀、古海洋、东亚季风和区域构造演化信息,是研究东亚季风和古环境演化的理想材料.但是,由于南海沉积环境复杂,物质来源多样,使得沉积物定年和环境气候探讨的难度加大.为此,本文选取南海中央海盆的SCS-01钻孔作为研究对象,建立其准确的年代框架,综合利用磁学和地球化学分析方法,探讨沉积物物源及其对东亚季风演化的指示.首先,通过对沉积物样品的岩石磁学特征分析,表明沉积物的主要载磁矿物为低矫顽力的假单畴磁铁矿,载磁矿物颗粒大小均一、含量变化小,基本符合建立地磁场相对古强度(Relative Paleointensity,RPI)曲线的"均一性"标准.在此基础上利用磁化率和非磁滞剩磁对天然剩磁进行归一化处理得到RPI,将钻孔的RPI曲线与全球或区域的标准RPI曲线(Sint-200,NAPIS-75和SCS-PIS)进行比较,得到了6个年龄控制点,并结合AMS-14C测年结果,建立了南海中央海盆75 ka以来的时间框架.SCS-01钻孔的RPI记录和其他全球性观测结果的一致性表明,南海的沉积物记录了全球尺度的地磁场古强度行为模式.综合稀土元素和沉积物记录的磁学信息对沉积物的来源进行探讨,结果表明SCS-01钻孔的沉积物主要来源于台湾地区,少量来自吕宋岛区域,这为进一步全面了解南海各区域的沉积物物源分布提供了数据支撑.另外,SCS-01钻孔的环境磁学记录可以较好地反映75 ka以来东亚季风在冰期-间冰期的变化,为该钻孔地区千年尺度上的气候变化提供可靠指标.

  • 加载中
  • 图 1 

    南海SCS-01岩心的钻探位置(红色五角星)和表层洋流以及黑潮信息(修改自Huang et al., 2021; Liu et al., 2003, 2016)

    Figure 1. 

    Drilling location of SCS-01 core (red star), surface current and Kuroshio information in the South China Sea(modified from Huang et al., 2021; Liu et al., 2003, 2016)

    图 2 

    SCS-01岩心照片及选定样品的岩石磁学结果

    Figure 2. 

    The photo of SCS-01 core and the rock magnetic results of representative samples

    图 3 

    IRM获得曲线矫顽力谱分析结果

    Figure 3. 

    Unmixing results of IRM acquisition curves

    图 4 

    (a) Day图(Dunlop, 2002);(b) κARMκ的相关图(King et al., 1983)

    Figure 4. 

    (a) Day diagram (Dunlop, 2002); (b) Correlation diagram of κARM and κ (King et al., 1983)

    图 5 

    沉积物磁组构特征图

    Figure 5. 

    Magnetic fabric characteristics of sediments

    图 6 

    代表性样品的逐步AF退磁的正交矢量图(左)和剩磁衰减曲线(右)

    Figure 6. 

    Orthogonal vector plots (left) and remanence decay curves (right) of stepwise AF demagnetization for representative samples

    图 7 

    (a) 磁倾角随深度的变化曲线,其中黑色虚线表示磁倾角为0°,灰色虚线代表GAD模型预期的磁倾角(33.42°);(b) 磁偏角随深度的变化曲线;(c) 最大角偏差随深度的变化曲线,其中黑色虚线表示MAD为6°

    Figure 7. 

    (a) The variation of magnetic inclination with depth, where the black dashed line indicates the magnetic inclination is 0°, the grey dashed line represents the expected magnetic inclination (33.42°) by the GAD model; (b) The variation of magneticdeclination with depth; (c) The variation of MAD with depth, where the black dashed line indicates MAD is 6°

    图 8 

    SCS-01与SCS-PIS (Yang et al., 2009)、Sint-200 (Guyodo and Valet, 1996)、NAPIS-75 (Laj et al., 2000)标准PRI记录的相关性

    Figure 8. 

    The correlation between SCS-01 and standard PRI records of SCS-PIS (Yang et al., 2009), Sint-200 (Guyodo and Valet, 1996) and NAPIS-75 (Laj et al., 2000)

    图 9 

    (a) 沉积物的UCC标准化REE模式;(b) LREEs和HREEs之间的关系;(c) δEu和δCe之间的关系

    Figure 9. 

    (a) UCC standardized REE model of sediments; (b) The relationship between LREEs and HREEs; (c) The relationship between δEu and δCe

    图 10 

    (a) S-ratio随年龄的变化曲线.岩心ODP1145和ODP1147位于南海北部(Kissel et al., 2020);岩心MD05-2898Cq和MD05-2900Cq/01位于南海中部(Kissel et al., 2020);岩心MD12-3432位于南海北部(Chen et al., 2017a). (b) χARM与S-ratio的关系.红河、珠江、湄公河和台湾的数据来源于(Kissel et al., 2016, 2017)

    Figure 10. 

    (a) The variation of S-ratio with age. Core ODP1145 and ODP1147 are located in the north of the South China Sea (Kissel et al., 2020); Core MD05-2898Cq and MD05-2900Cq/01 are located in the middle of the South China Sea (Kissel et al., 2020); Core MD12-3432 is located in the north of the South China Sea (Chen et al., 2017a). (b) The relationship between χARMand S-ratio. The data of Red River, Pearl River, Mekong River and Taiwan are from Kissel et al.(2016, 2017)

    图 11 

    磁学参数和其他数据随年龄的变化曲线

    Figure 11. 

    Variation curve of magnetic parameters and other data with age

    表 1 

    沉积物样品的AMS-14C定年结果

    Table 1. 

    AMS-14C dating results of sediments samples

    实验室编号 样品编号 样品性质 深度(cm) 14C校正年代(cal yr BP,±1σ)
    GZ9749 NH-1 有孔虫 15 6230±52
    GZ9750 NH-2 有孔虫 30 9073±67
    GZ9751 NH-3 有孔虫 30 9251±64
    GZ9752 NH-4 有孔虫 60 13278±42
    GZ9753 NH-5 有孔虫 120 18679±94
    GZ9754 NH-6 有孔虫 120 19171±132
    GZ9755 NH-7 有孔虫 145 21305±187
    GZ9756 NH-8 有孔虫 145 22696±106
    GZ9757 NH-9 有孔虫 195 25465±168
    GZ9758 NH-10 有孔虫 255 33800±368
    GZ9759 NH-11 有孔虫 310 38402±745
    GZ9760 NH-12 有孔虫 370 42786±653
    注:yr BP表示距公元1950年的年代.
    Note: yr BP represents the date before AD 1950.
    下载: 导出CSV
  •  

    Abrajevitch A, Kodama K. 2011. Diagenetic sensitivity of paleoenvironmental proxies: A rock magnetic study of Australian continental margin sediments. Geochemistry, Geophysics, Geosystems, 12(5): Q05Z24, doi: 10.1029/2010GC003481.

     

    Berger A L. 1978. Long-term variations of caloric insolation resulting from the Earth's orbital elements. Quaternary Research, 9(2): 139-167. doi: 10.1016/0033-5894(78)90064-9

     

    Bloemendal J, King J W, Hall F R, et al. 1992. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology. Journal of Geophysical Research, 97(B4): 4361-4375. doi: 10.1029/91JB03068

     

    Bonhommet N, Zähringer J. 1969. Paleomagnetism and potassium argon age determinations of the Laschamp geomagnetic polarity event. Earth and Planetary Science Letters, 6(1): 43-46. doi: 10.1016/0012-821X(69)90159-9

     

    Bühring C, Leg 184 Shipboard Scientific Party, Sarnthein M, et al. 2000. Toba ash layers in the South China Sea: evidence of contrasting wind directions during eruption ca. 74 ka. Geology, 28(3): 275-278. doi: 10.1130/0091-7613(2000)028<0275:TALITS>2.3.CO;2

     

    Caruso M J, Gawarkiewicz G G, Beardsley R C. 2006. Interannual variability of the Kuroshio intrusion in the South China Sea. Journal of Oceanography, 62(4): 559-575. doi: 10.1007/s10872-006-0076-0

     

    Chang L, Roberts A P, Heslop D, et al. 2016. Widespread occurrence of silicate-hosted magnetic mineral inclusions in marine sediments and their contribution to paleomagnetic recording. Journal of Geophysical Research, 121(12): 8415-8431. doi: 10.1002/2016JB013109

     

    Chen Q, Kissel C, Liu Z F. 2017a. Late Quaternary climatic forcing on the terrigenous supply in the northern South China Sea: input from magnetic studies. Earth and Planetary Science Letters, 471: 160-171. doi: 10.1016/j.epsl.2017.04.047

     

    Chen Q, Liu Z F, Kissel C. 2017b. Clay mineralogical and geochemical proxies of the East Asian summer monsoon evolution in the South China Sea during Late Quaternary. Scientific Reports, 7(1): 42083, doi: 10.1038/srep42083.

     

    Cheng H, Edwards R L, Sinha A, et al. 2016. The Asian monsoon over the past 640, 000 years and ice age terminations. Nature, 534(7609): 640-646. doi: 10.1038/nature18591

     

    Clift P D, Wan S M, Blusztajn J. 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth-Science Reviews, 130: 86-102. doi: 10.1016/j.earscirev.2014.01.002

     

    Cullers R L. 1994. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58(22): 4955-4972. doi: 10.1016/0016-7037(94)90224-0

     

    Deng C, Zhu R, Jackson M J, et al. 2001. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: a pedogenesis indicator. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(11-12): 873-878. doi: 10.1016/S1464-1895(01)00135-1

     

    Ding J N, Wu Y Q, Tan L H, et al. 2021. Trace and rare earth element evidence for the provenances of aeolian sands in the Mu Us Desert, NW China. Aeolian Research, 50: 100683, doi: 10.1016/j.aeolia.2021.100683.

     

    Duan Z Q, Liu Q S, Gai C C, et al. 2017. Magnetostratigraphic and environmental implications of greigite (Fe3S4) formation from Hole U1433A of the IODP Expedition 349, South China Sea. Marine Geology, 394: 82-97. doi: 10.1016/j.margeo.2017.02.008

     

    Dunlop D, Özdemir Ö, Fuller M D. 1998. Rock magnetism: fundamentals and frontiers. Physics Today, 51(9): 64-66. doi: 10.1063/1.882466

     

    Dunlop D J. 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107(B3): 2056, doi: 10.1029/2001JB000486.

     

    Egli R. 2004. Characterization of individual rock magnetic components by analysis of remanence curves: 2. Fundamental properties of coercivity distributions. Physics and Chemistry of the Earth, Parts A/B/C, 29(13-14): 851-867.

     

    Guyodo Y, Valet J P. 1996. Relative variations in geomagnetic intensity from sedimentary records: the past 200, 000 years. Earth and Planetary Science Letters, 143(1-4): 23-36. doi: 10.1016/0012-821X(96)00121-5

     

    Harrison R J, Feinberg J M. 2008. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry, Geophysics, Geosystems, 9(5): Q05016, doi: 10.1029/2008GC001987.

     

    Heslop D, Dekkers M J, Kruiver P P, et al. 2002. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophysical Journal International, 148(1): 58-64. doi: 10.1046/j.0956-540x.2001.01558.x

     

    Hu D K, Böning P, Köhler C M, et al. 2012. Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea. Chemical Geology, 326-327: 1-18. doi: 10.1016/j.chemgeo.2012.07.024

     

    Huang J, Jiang F Q, Wan S M, et al. 2016a. Terrigenous supplies variability over the past 22, 000 yr in the southern South China Sea slope: relation to sea level and monsoon rainfall changes. Journal of Asian Earth Sciences, 117: 317-327. doi: 10.1016/j.jseaes.2015.12.019

     

    Huang J, Wan S M, Xiong Z F, et al. 2016b. Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 871-881. doi: 10.1016/j.palaeo.2015.10.036

     

    Huang J, Jiao W J, Liu J X, et al. 2021. Sediment distribution and dispersal in the southern South China Sea: evidence from clay minerals and magnetic properties. Marine Geology, 439: 106560, doi: 10.1016/j.margeo.2021.106560.

     

    Jiang Z X, Jin C S, Wang Z B, et al. 2020. Chronostratigraphic framework of the East China Sea since MIS 6 from geomagnetic paleointensity and environmental magnetic records. Global and Planetary Change, 185: 103092, doi: 10.1016/j.gloplacha.2019.103092.

     

    Jiwarungrueangkul T, Liu Z F, Zhao Y L. 2019. Terrigenous sediment input responding to sea level change and East Asian monsoon evolution since the last deglaciation in the southern South China Sea. Global and Planetary Change, 174: 127-137. doi: 10.1016/j.gloplacha.2019.01.011

     

    Jones C H. 2002. User-driven integrated software lives: "paleomag" paleomagnetics analysis on the Macintosh. Computers & Geosciences, 28(10): 1145-1151.

     

    King J W, Banerjee S K, Marvin J. 1983. A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: application to paleointensity for the last 4000 years. Journal of Geophysical Research, 88(B7): 5911-5921. doi: 10.1029/JB088iB07p05911

     

    Kirschvink J L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3): 699-718. doi: 10.1111/j.1365-246X.1980.tb02601.x

     

    Kissel C, Laj C, Clemens S, et al. 2003. Magnetic signature of environmental changes in the last 1.2 Myr at ODP Site 1146, South China Sea. Marine Geology, 201(1-3): 119-132.

     

    Kissel C, Liu Z F, Li J H, et al. 2016. Magnetic minerals in three Asian rivers draining into the South China Sea: pearl, red, and Mekong Rivers. Geochemistry, Geophysics, Geosystems, 17(5): 1678-1693. doi: 10.1002/2016GC006283

     

    Kissel C, Liu Z F, Li J H, et al. 2017. Magnetic signature of river sediments drained into the southern and eastern part of the South China Sea (Malay Peninsula, Sumatra, Borneo, Luzon and Taiwan). Sedimentary Geology, 347: 10-20. doi: 10.1016/j.sedgeo.2016.11.007

     

    Kissel C, Laj C, Jian Z, et al. 2020. Past environmental and circulation changes in the South China Sea: input from the magnetic properties of deep-sea sediments. Quaternary Science Reviews, 236: 106263, doi: 10.1016/j.quascirev.2020.106263.

     

    Laj C, Kissel C, Mazaud A, et al. 2000. North Atlantic palaeointensity stack since 75ka (NAPIS-75) and the duration of the Laschamp event. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 358(1768): 1009-1025. doi: 10.1098/rsta.2000.0571

     

    Lascu I, Einsle J F, Ball M R, et al. 2018. The vortex state in geologic materials: a micromagnetic perspective. Journal of Geophysical Research, 123(9): 7285-7304. doi: 10.1029/2018JB015909

     

    Levi S, Banerjee S K. 1976. On the possibility of obtaining relative paleointensities from lake sediments. Earth and Planetary Science Letters, 29(1): 219-226. doi: 10.1016/0012-821X(76)90042-X

     

    Li C F, Lin J, Kulhanek D K, et al. 2014. South China Sea Tectonics. Opening of the South China Sea and its implications for southeast Asian tectonics, climates, and deep mantle processes since the late Mesozoic. Shanghai: International Ocean Discovery Program.

     

    Li C S, Shi X F, Kao S J, et al. 2013. Rare earth elements in fine-grained sediments of major rivers from the high-standing island of Taiwan. Journal of Asian Earth Sciences, 69: 39-47. doi: 10.1016/j.jseaes.2013.03.001

     

    Li M K, Ouyang T P, Roberts A P, et al. 2018. Influence of Sea Level Change and Centennial East Asian monsoon variations on northern South China Sea sediments over the past 36 kyr. Geochemistry, Geophysics, Geosystems, 19(5): 1674-1689. doi: 10.1029/2017GC007321

     

    Li M K, Ouyang T P, Tian C J, et al. 2019. Sedimentary responses to the East Asian monsoon and sea level variations recorded in the northern South China Sea over the past 36 kyr. Journal of Asian Earth Sciences, 171: 213-224. doi: 10.1016/j.jseaes.2018.01.001

     

    Liang X R, Wei G J, Shao L, et al. 2001. Records of Toba eruptions in the South China Sea: Chemical characteristics of the glass shards from ODP 1143A. Science in China Series D: Earth Sciences, 44(10): 871-878. doi: 10.1007/BF02907078

     

    Liu J G, Yan W, Chen Z, et al. 2012. Sediment sources and their contribution along northern coast of the South China Sea: evidence from clay minerals of surface sediments. Continental Shelf Research, 47: 156-164. doi: 10.1016/j.csr.2012.07.013

     

    Liu Q S, Deng C L, Yu Y, et al. 2005. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 161(1): 102-112. doi: 10.1111/j.1365-246X.2005.02564.x

     

    Liu Z F, Trentesaux A, Clemens S C, et al. 2003. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 201(1-3): 133-146. doi: 10.1016/S0025-3227(03)00213-5

     

    Liu Z F, Trentesaux A, Clemens S C, et al. 2003. Quaternary clay mineralogy in the northern South China Sea (ODP Site 1146): implications for oceanic current transport and East Asian monsoon evolution. Science in China Series D: Earth Sciences, 46(12): 1223-1235. doi: 10.1360/02yd0107

     

    Liu Z F, Zhao Y L, Li J R, et al. 2007. Late Quaternary clay minerals off Middle Vietnam in the western South China Sea: implications for source analysis and East Asian monsoon evolution. Science in China Series D: Earth Sciences, 50(11): 1674-1684. doi: 10.1007/s11430-007-0115-8

     

    Liu Z F, Colin C, Li X J, et al. 2010. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport. Marine Geology, 277(1-4): 48-60. doi: 10.1016/j.margeo.2010.08.010

     

    Liu Z F, Zhao Y L, Colin C, et al. 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005

     

    Marini J C, Chauvel C, Maury R C. 2005. Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source. Contributions to Mineralogy and Petrology, 149(2): 216-232. doi: 10.1007/s00410-004-0645-4

     

    Morton B, Blackmore G. 2001. South China Sea. Marine Pollution Bulletin, 42(12): 1236-1263. doi: 10.1016/S0025-326X(01)00240-5

     

    Nakanishi T, Torii M, Yamasaki K, et al. 2017. Tephra identification and radiocarbon chronology of sediment from Paitan Lake at the northern part of Luzon Central Plain, Philippines. Quaternary International, 456: 210-216. doi: 10.1016/j.quaint.2017.08.047

     

    Newhall C G, Daag A S, Delfin Jr F G, et al. 1996. Eruptive history of Mount Pinatubo. //Newhall C G, Punongbayan R S eds. Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines. Seattle: Philippine Institute of Volcanology and Seismology, University of Washington Press, 165-196.

     

    North Greenland Ice Core Project Members. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431(7005): 147-151. doi: 10.1038/nature02805

     

    Ouyang T P, Tian C J, Zhu Z Y, et al. 2014. Magnetic characteristics and its environmental implications of core YSJD-86GC sediments from the southern South China Sea. Chinese Science Bulletin, 59(25): 3176-3187. doi: 10.1007/s11434-014-0438-8

     

    Pike C R, Roberts A P, Verosub K L. 1999. Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics, 85(9): 6660-6667. doi: 10.1063/1.370176

     

    Pourmand A, Dauphas N, Ireland T J. 2012. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chemical Geology, 291: 38-54. doi: 10.1016/j.chemgeo.2011.08.011

     

    Reimer P J, Baillie M G L, Bard E, et al. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50, 000 years cal BP. Radiocarbon, 51(4): 1111-1150. doi: 10.1017/S0033822200034202

     

    Roberts A P, Pike C R, Verosub K L. 2000. First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research, 105(B12): 28461-28475. doi: 10.1029/2000JB900326

     

    Roberts A P, Florindo F, Villa G, et al. 2011. Magnetotactic bacterial abundance in pelagic marine environments is limited by organic carbon flux and availability of dissolved iron. Earth and Planetary Science Letters, 310(3-4): 441-452. doi: 10.1016/j.epsl.2011.08.011

     

    Roberts A P, Almeida T P, Church N S, et al. 2017. Resolving the origin of pseudo-single domain magnetic behavior. Journal of Geophysical Research, 122(12): 9534-9558. doi: 10.1002/2017JB014860

     

    Robertson D J, France D E. 1994. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Physics of the Earth and Planetary Interiors, 82(3-4): 223-234. doi: 10.1016/0031-9201(94)90074-4

     

    Robinson S G. 1986. The Late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Physics of the Earth and Planetary Interiors, 42(1-2): 22-47. doi: 10.1016/S0031-9201(86)80006-1

     

    Roser B P, Korsch R J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1-2): 119-139. doi: 10.1016/0009-2541(88)90010-1

     

    Shao L, Li X H, Wei G J, et al. 2001. Provenance of a prominent sediment drift on the northern slope of the South China Sea. Science in China Series D: Earth Sciences, 44(10): 919-925. doi: 10.1007/BF02907084

     

    Stoner J S, St-Onge G. 2007. Chapter three magnetic stratigraphy in paleoceanography: reversals, excursions, paleointensity, and secular variation. Developments in Marine Geology, 1: 99-138.

     

    Stuiver M, Reimer P J, Reimer R W. 2021. CALIB 8.2[WWW program] at http://calib.org.

     

    Sun D H, An Z S, Shaw J, et al. 1998. Magnetostratigraphy and palaeoclimatic significance of Late Tertiary aeolian sequences in the Chinese Loess Plateau. Geophysical Journal International, 134(1): 207-212. doi: 10.1046/j.1365-246x.1998.00553.x

     

    Tauxe L. 1993. Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice. Reviews of Geophysics, 31(3): 319-354. doi: 10.1029/93RG01771

     

    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell Scientific.

     

    Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241-265. doi: 10.1029/95RG00262

     

    Wan S M. 2006. Evolution of the East Asian monsoon: mineralogical and sedimentologic records in the South China Sea since 20 Ma[Ph. D. thesis] (in Chinese). Qingdao: Institute of Oceanology, Chinese Academy of Sciences.

     

    Wan S M, Li A C, Clift P D, et al. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009

     

    Wang C K. 2013. The magnetic parameters and its environmental implications in sediments since Late Pleistocene from Dongsha area, South China Sea[Master's thesis] (in Chinese). Beijing: China University of Geosciences (Beijing).

     

    Wang J H, Meng J H, Huo C S, et al. 2012. A brief introduction to parameters used in environmental magnetism. Chinese Journal of Engineering Geophysics (in Chinese), 9(4): 423-427. doi: 10.1088/1742-2132/9/4/423

     

    Wang P X, Prell W L, Blum P, et al. 2000. Leg 184 Summary: exploring the Asian Monsoon through Drilling in the South China Sea. //Wang P X, Prell W L, Blum P, eds. Proceedings of the Ocean Drilling Program. College Station: Texas A & M University.

     

    Wang P X, Jian Z M, Zhao Q H, et al. 2003. Evolution of the South China Sea and monsoon history revealed in deep-sea records. Chinese Science Bulletin, 48(23): 2549-2561. doi: 10.1360/03wd0156

     

    Wang P X, Clemens S, Beaufort L, et al. 2005. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quaternary Science Reviews, 24(5-6): 595-629. doi: 10.1016/j.quascirev.2004.10.002

     

    Wang S P, Li Y X, Fu S Y, et al. 2014. Environmental changes as recorded by mineral magnetic properties of sediments from the core GHE24L, South China Sea. Quaternary Sciences (in Chinese), 34(3): 516-527.

     

    Wang Y, Chi Z Q, Li D G, et al. 2004. Relative paleointensity of the geomagnetic field during the past 0.8 Ma from Nihewan Basin, Hebei Province, China. Chinese Science Bulletin, 49(9): 948-952. doi: 10.1007/BF03184017

     

    Webster P J. 1994. The role of hydrological processes in ocean-atmosphere interactions. Reviews of Geophysics, 32(4): 427-476. doi: 10.1029/94RG01873

     

    Wei G J, Liu Y, Li X H, et al. 2004. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 212(3-4): 331-342. doi: 10.1016/S0031-0182(04)00329-3

     

    Wei G J, Deng W F, Liu Y, et al. 2007. High-resolution sea surface temperature records derived from foraminiferal Mg/Ca ratios during the last 260 ka in the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 250(1-4): 126-138. doi: 10.1016/j.palaeo.2007.03.005

     

    Wen Q. 2016. Characteristics of environmental magnetism of ODP site 1148 in South China Sea since Neogene and its response for structures and climate[Master's thesis] (in Chinese). Beijing: China University of Geosciences (Beijing).

     

    Wu H C, Zhao X X, Shi M N, et al. 2014. A 23 Myr magnetostratigraphic time framework for Site 1148, ODP Leg 184 in South China Sea and its geological implications. Marine and Petroleum Geology, 58: 749-759. doi: 10.1016/j.marpetgeo.2014.01.003

     

    Xu F J, Hu B Q, Zhao J T, et al. 2021. Provenance and weathering of sediments in the deep basin of the northern South China Sea during the last 38 kyr. Marine Geology, 440: 106602. doi: 10.1016/j.margeo.2021.106602

     

    Xu Z F, Han G L. 2009. Rare earth elements (REE) of dissolved and suspended loads in the Xijiang River, South China. Applied Geochemistry, 24(9): 1803-1816. doi: 10.1016/j.apgeochem.2009.06.001

     

    Yamamoto Y, Yamazaki T, Kanamatsu T, et al. 2007. Relative paleointensity stack during the last 250 kyr in the northwest Pacific. Journal of Geophysical Research, 112(B1): B01104, doi: 10.1029/2006JB004477.

     

    Yamazaki T, Oda H. 2005. A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediment cores. Geochemistry, Geophysics, Geosystems, 6(11): Q11H20, doi: 10.1029/2006JB004477.

     

    Yan Q S, Wang K S, Shi X F. 2008. Provinces and provenance of heavy minerals in surface sediments of the sea area near Zhongsha Islands in South China Sea. Marine Geology & Quaternary Geology (in Chinese), 28(1): 17-24.

     

    Yang Q H, Lin Z H, Zhang F Y, et al. 2002. The distribution characteristics of heavy minerals in the East of South China Sea and their controlling factors. Journal of Ocean University of Qingdao (Natural Science Edition) (in Chinese), 32(6): 956-964.

     

    Yang S Y, Jung H S, Choi M S, et al. 2002. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth and Planetary Science Letters, 201(2): 407-419. doi: 10.1016/S0012-821X(02)00715-X

     

    Yang X Q, Heller F, Wu N Y, et al. 2009. Geomagnetic paleointensity dating of South China Sea sediments for the last 130 kyr. Earth and Planetary Science Letters, 284(1-2): 258-266. doi: 10.1016/j.epsl.2009.04.035

     

    Yang X Q, Peng X C, Qiang X K, et al. 2016. Chemical weathering intensity and terrigenous flux in South China during the Last 90, 000 Years-Evidence from magnetic signals in marine sediments. Frontiers in Earth Science, 4: 47, doi: 10.3389/feart.2016.00047.

     

    Yang X Q, Weng Y Z, Zhou Q X, et al. 2016. Paleosecular variations of geomagnetic field since CA. 17cal. ka in the northern South China Sea. Quaternary Sciences (in Chinese), 36(5): 1165-1175.

     

    Zhao W, Zhou C, Tian J W, et al. 2014. Deep water circulation in the Luzon Strait. Journal of Geophysical Research, 119(2): 790-804. doi: 10.1002/2013JC009587

     

    Zhou W J, Yang X Q, Zhou Y Z. 2006. Brief introduction of magnetic parameter to environmental magnetism. Journal of the Graduates Sun Yat-Sen University (Natural Sciences, Medicine) (in Chinese), 26(1): 82-89.

     

    梁细荣, 韦刚健, 邵磊等. 2001. Toba火山喷发在南海沉积物中的记录——ODP1143站钻孔火山玻璃的证据. 中国科学(D辑), 31(10): 861-866. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110009.htm

     

    刘志飞, Trentesaux A, Clemens S C等. 2003. 南海北坡ODP1146站第四纪粘土矿物记录: 洋流搬运与东亚季风演化. 中国科学(D辑), 33(3): 271-280. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200303009.htm

     

    刘志飞, 赵玉龙, 李建如等. 2007. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化. 中国科学(D辑: 地球科学), 37(9): 1176-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200709005.htm

     

    万世明. 2006. 近2千万年以来东亚季风演化的南海沉积矿物学记录[博士论文]. 青岛: 中国科学院研究生院(海洋研究所).

     

    王长昆. 2013. 南海东沙晚更新世深水沉积物的磁性特征及其环境意义[硕士论文]. 北京: 中国地质大学(北京).

     

    王金海, 孟军海, 霍成胜等. 2012. 环境磁学参数简介. 工程地球物理学报, 9(4): 423-427. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201204013.htm

     

    王世朋, 李永祥, 付少英等. 2014. 南海北部陆坡GHE24L柱样沉积物磁性特征及其环境意义. 第四纪研究, 34(3): 516-527. doi: 10.3969/j.issn.1001-7410.2014.03.06

     

    王永, 迟振卿, 李德贵等. 2004. 泥河湾盆地0.8 Ma以来的地磁场相对强度记录. 科学通报, 49(9): 879-882. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200409014.htm

     

    温强. 2016. 南海ODP1148站位岩芯新近纪以来的环境磁学特征及其对气候、构造的响应[硕士论文]. 北京: 中国地质大学(北京).

     

    鄢全树, 王昆山, 石学法. 2008. 中沙群岛近海表层沉积物重矿物组合分区及物质来源. 海洋地质与第四纪地质, 28(1): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200801002.htm

     

    杨群慧, 林振宏, 张富元等. 2002. 南海东部重矿物分布特征及其影响因素. 青岛海洋大学学报, 32(6): 956-964. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200206019.htm

     

    杨小强, 翁元忠, 周绮娴等. 2016. 南海北部约17cal. ka以来地磁场长期变记录. 第四纪研究, 36(5): 1165-1175.

     

    周文娟, 杨小强, 周永章. 2006. 环境磁学磁性参数简介. 中山大学研究生学刊(自然科学、医学版), 26(1): 82-89.

  • 加载中

(11)

(1)

计量
  • 文章访问数:  2660
  • PDF下载数:  179
  • 施引文献:  0
出版历程
收稿日期:  2022-06-05
修回日期:  2022-09-13
上线日期:  2023-08-10

目录