智能导向钻井一体化软件系统平台研发

付长民, 王啸天, 底青云. 2023. 智能导向钻井一体化软件系统平台研发. 地球物理学报, 66(1): 139-152, doi: 10.6038/cjg2022Q0416
引用本文: 付长民, 王啸天, 底青云. 2023. 智能导向钻井一体化软件系统平台研发. 地球物理学报, 66(1): 139-152, doi: 10.6038/cjg2022Q0416
FU ChangMin, WANG XiaoTian, DI QingYun. 2023. Research and development of integrated software platform for Intelligent Drilling System. Chinese Journal of Geophysics (in Chinese), 66(1): 139-152, doi: 10.6038/cjg2022Q0416
Citation: FU ChangMin, WANG XiaoTian, DI QingYun. 2023. Research and development of integrated software platform for Intelligent Drilling System. Chinese Journal of Geophysics (in Chinese), 66(1): 139-152, doi: 10.6038/cjg2022Q0416

智能导向钻井一体化软件系统平台研发

  • 基金项目:

    中国科学院A类战略性先导科技专项(XDA14050301)资助

详细信息
    作者简介:

    付长民, 高级工程师, 主要从事电磁法正反演、软件研发与应用研究等工作.E-mail: fcm168@mail.iggcas.ac.cn

    通讯作者: 底青云, 女, 1964年生, 研究员, 主要从事电磁法理论方法与装备技术研究.E-mail: qydi@mail.iggcas.ac.cn
  • 中图分类号: P631

Research and development of integrated software platform for Intelligent Drilling System

More Information
  • 导向钻井技术的智能化是实现复杂油气藏高效开发的重要途径.本文面向智能导钻系统的实际需求,基于云平台、大数据及人工智能等技术,开展了一体化软件系统的研发.针对整套系统模块众多、功能复杂的问题,首先研发了可扩展模块化底层软件平台,在此基础上建立起集成数据采集、传输、存储、应用与决策为一体的工业化软件系统.本文详细介绍了整套软件系统的研发思路、架构设计、实现方式及各模块主要功能,同时开展了人工智能算法研发和软件平台的集成测试.研发的各软件系统模块不仅实现了现有功能的工程实用化,而且具备良好的扩展性,能够为智能导钻技术的持续性发展奠定基础.

  • 加载中
  • 图 1 

    智能导钻软件系统总体设计

    Figure 1. 

    Overall design of Intelligent Drilling Software System platform

    图 2 

    数据采集子系统部分软件模块

    Figure 2. 

    Some software modules of the data acquisition subsystem

    图 3 

    WITS协议实时数据传输软件

    Figure 3. 

    WITS protocol real-time data transmission software

    图 4 

    数据应用子系统部分软件模块

    Figure 4. 

    Some software modules of the data application subsystem

    图 5 

    远程决策子系统部分软件模块

    Figure 5. 

    Some software modules of the remote decision-making subsystem

    图 6 

    测井曲线智能预测流程图

    Figure 6. 

    The workflow of well log prediction based on AI

    图 7 

    随钻测井伽马曲线图像化处理

    Figure 7. 

    Imaging output of LWD gamma log series

    图 8 

    某井岩石密度预测结果

    Figure 8. 

    Prediction output of density log of a well

  •  

    Adigun O, Okusanya A, Okwa H. 2004. Case study of geosteering a horizontal well in western Nigeria. The Leading Edge, 23: 588-591, doi: 10.1190/1.1766240.

     

    Ahmed T, Siddiqui M, Hussain A, et al. 2010. Successful implementation of interact (real time data transmission) in testing services to allow remote witnessing of testing operations and multipoint collaboration (Latif Gas Field—A success story). //SPE/PAPG Annual Technical Conference, Islamabad, Pakistan, SPE-142840-MS. doi: 10.2118/142840-MS.

     

    An W Z, Xu R Q, He L Q, et al. 2007. Application of realtime visual decision-making system in the development of Lvda oilfield in Bohai Bay. Petroleum Drilling Techniques (in Chinese), 35(4): 100-102, doi: 10.3969/j.issn.1001-0890.2007.04.031.

     

    Booth J E. 2009. Drilling operations centers: A history of functionality and organizational purpose—The first generation. //SPE Digital Energy Conference and Exhibition. Houston, Texas, USA: SPE, doi: 10.2118/123225-MS.

     

    Booth J E E. 2011. Real-time drilling operations centers: A history of functionality and organizational purpose-the second generation. SPE Drilling & Completion, 26(2): 295-302, doi: 10.2118/126017-Pa.

     

    Chen W, Yang L Q, Zha B, et al. 2020. Deep learning reservoir porosity prediction based on multilayer long short-term memory network. Geophysics, 85(4): WA213WA225, doi: 10.1190/Geo2019-0261.1.

     

    Ge Y H, Zhou B, Zhang Y L. 2019. Application conditions and development orientation of RTOC based on internet of things. Petroleum Science and Technology Forum (in Chinese), 38(2): 45-51, doi: 10.3969/j.issn.1002-302x.2019.02.007.

     

    Guo Y H. 2010. Prediction and update of LWD curve while drilling. Petroleum Drilling Techniques (in Chinese), 38(6): 25-28, doi: 10.3969/j.issn.1001-0890.2010.06.006.

     

    Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735-1780, doi: 10.1162/neco.1997.9.8.1735.

     

    Hong L, Yang H, Li X G, et al. 2020. Development status and tendency of using artificial intelligence to generate well logs. World Petroleum Industry (in Chinese), 27(4): 49-56.

     

    Jia C Z. 2020. Development challenges and future scientific and technological researches in China's petroleum industry upstream. Acta Petrolei Sinica (in Chinese), 41(12): 1445-1464, doi: 10.7623/syxb202012001.

     

    Jiang W T, Zhang D B, Ling L W, et al. 2022. Timeseries classification based on image transformation using feature fusion strategy. Neural Processing Letters, 54(5): 3727-3748, doi: 10.1007/s11063-022-10783-z.

     

    Kantipudi M P, Kumar S, Jha A K. 2021. Scene text recognition based on bidirectional LSTM and deep neural network. Computational Intelligence and Neuroscience, 2021: 2676780, doi: 10.1155/2021/2676780.

     

    Kirkman M A, Symmonds M E, Harbinson S W, et al. 2003. Wellsite information transfer standard markup language, WITSML, an update. //SPE Annual Technical Conference and Exhibition. Denver, Colorado: SPE, doi: 10.2118/84066-MS.

     

    Kuang L C, Liu H, Ren Y L, et al. 2021. Application and development trend of artificial intelligence in petroleum exploration and development. Petroleum Exploration and Development (in Chinese), 48(1): 1-11, doi: 10.11698/PED.2021.01.01.

     

    Li G S, Song X Z, Tian S C. 2020. Intelligent drilling technology research status and development trends. Petroleum Drilling Techniques (in Chinese), 48(1): 1-8, doi: 10.11911/syztjs.2020001.

     

    Pham N, Wu X M, Naeini E Z. 2020. Missing well log prediction using convolutional long short-term memory network. Geophysics, 85(4): WA159-WA171, doi: 10.1190/Geo2019-0282.1.

     

    Rosendahl T, Hepsø V. 2012. Integrated Operations in the Oil and Gas Industry: Sustainability and Capability Development. Pennsylvania: IGI Global.

     

    Shan L Q, Liu Y C, Tang M, et al. 2021. CNN-BiLSTM hybrid neural networks with attention mechanism for well log prediction. Journal of Petroleum Science and Engineering, 205: 108838, doi: 10.1016/j.petrol.2021.108838.

     

    Wang J, Cao J X, You J C, et al. 2021. A method for well log data generation based on a spatio-temporal neural network. J. Geophys. Eng. , 18(5): 700-711, doi: 10.1093/jge/gxab046.

     

    Wang M S, Guang X J. 2020. Status and development trends of intelligent drilling technology. Acta Petrolei Sinica (in Chinese), 41(4): 505-512, doi: 10.7623/syxb202004013.

     

    Wang X, Xie X, Chen Y H, et al. 2022. A machine learning approach to forecasting carry trade returns. Appl. Econ. Lett., 29(3): 1199-1204, doi: 10.1080/13504851.2021.1918624.

     

    Wang Z G, Oates T. 2015a. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. //Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin, Texas, USA: AAAI.

     

    Wang Z G, Oates T. 2015b. Imaging time-series to improve classification and imputation. //Proceedings of the 24th International Joint Conference on Artificial Intelligence. Buenos Aires, Argentina: AAAI, 3939-3945.

     

    Xiao L, Yang C S, Zhao J H, et al. 2015. Key technologies of drilling engineering decision support systems. Petroleum Drilling Techniques (in Chinese), 43(2): 38-43, doi: 10.11911/syztjs.201502007.

     

    Yan T, Xu R, Liu W K, et al. 2020. Research and development of intelligent drilling technology in China. Journal of Northeast Petroleum University (in Chinese), 44(4): 15-21, doi: 10.3969/j.issn.2095-4107.2020.04.003.

     

    Yang C S, Li C S, Sun X D, et al. 2021. Research method and practice of artificial intelligence drilling technology. Petroleum Drilling Techniques (in Chinese), 49(5): 7-13, doi: 10.11911/syztjs.2020136.

     

    Yang Z L, Zhou L, Peng W L, et al. 2008. Application of BPneural network technology in sonic log data rebuilding. Journal of Southwest Petroleum University (Science & Technology Edition) (in Chinese), 30(1): 63-66, doi: 10.3863/j.issn.1000-2634.2008.01.017.

     

    Zhang D X, Chen Y T, Meng J. 2018. Synthetic well logs generation via Recurrent Neural Networks. Petroleum Exploration and Development, 45(4): 629-639, doi: 10.1016/S1876-3804(18)30068-5.

     

    Zhang J, Fei H T, Wang C J, et al. 2011. Development of remote drilling decision-making support system and its application in well Yuanba 103H. Petroleum Drilling Techniques (in Chinese), 39(6): 104-107, doi: 10.3969/j.issn.1001-0890.2011.06.024.

     

    Zhang W S, Chen L C, Liu X, et al. 2014. An OSGi-based flexible and adaptive pervasive cloud infrastructure. Science China Information Sciences, 57(3): 1-11, doi: 10.1007/s11432-014-5070-3.

     

    Zhao B Y, Li W, Xia L, et al. 2021. A CNN-based FBG demodulation method adopting the GAF-assisted ascending dimension of complicated signal. Opt. Commun. , 499: 127296, doi: 10.1016/j.optcom.2021.127296.

     

    Zhao Q, Liu Y S, Jiang H W, et al. 2013. Research and development of real-timedrilling monitoring and technological decision-making system. Petroleum Science and Technology Forum (in Chinese), 32(3): 11-14, doi: 10.3969/j.issn.1002-302x.2013.03.003.

     

    Zhao T, Ge Y H, Zhou B, et al. 2019. Status quo and development of RTOC for drilling service IoT. International Petroleum Economics (in Chinese), 27(11): 93-97, doi: 10.3969/j.issn.1004-7298.2019.11.014.

     

    Zhou J Y, Wang X L, Yang C H, et al. 2022. Anovel soft sensor modeling approach based on difference-LSTM for complex industrial process. IEEE Transactions on Industrial Informatics, 18(5): 2955-2964, doi: 10.1109/Tii.2021.3110507.

     

    李阳. 2020. 给油气田装上智能化引擎. 中国石油石化, 20: 12-15, doi: 10.3969/j.issn.1671-7708.2020.20.003.

     

    闫铁, 许瑞, 刘维凯等. 2020. 中国智能化钻井技术研究发展. 东北石油大学学报, 44(4): 15-21, doi: 10.3969/j.issn.2095-4107.2020.04.003.

     

    安文忠, 徐荣强, 何辽勤等. 2007. 实时可视决策系统在渤海湾旅大油田开发中的应用. 石油钻探技术, 35(4): 100-102, doi: 10.3969/j.issn.1001-0890.2007.04.031.

     

    葛云华, 周波, 张彦龙. 2019. 基于物联网的钻井远程支持系统应用现状及发展方向. 石油科技论坛, 38(2): 45-51, doi: 10.3969/j.issn.1002-302x.2019.02.007.

     

    郭永恒. 2010. 随钻测井曲线预测及更新方法研究. 石油钻探技术, 38(6): 25-28, doi: 10.3969/j.issn.1001-0890.2010.06.006.

     

    侯亮, 杨虹, 李晓光等. 2020. 测井曲线智能合成技术发展现状与趋势. 世界石油工业, 27(4): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SSYY202004011.htm

     

    贾承造. 2020. 中国石油工业上游发展面临的挑战与未来科技攻关方向. 石油学报, 41(12): 1445-1464, doi: 10.7623/syxb202012001.

     

    匡立春, 刘合, 任义丽等. 2021. 人工智能在石油勘探开发领域的应用现状与发展趋势. 石油勘探与开发, 48(1): 1-11, doi: 10.11698/PED.2021.01.01.

     

    李根生, 宋先知, 田守嶒. 2020. 智能钻井技术研究现状及发展趋势. 石油钻探技术, 48(1): 1-8, doi: 10.11911/syztjs.2020001.

     

    王敏生, 光新军. 2020. 智能钻井技术现状与发展方向. 石油学报, 41(4): 505-512, doi: 10.7623/syxb202004013.

     

    肖莉, 杨传书, 赵金海等. 2015. 钻井工程决策支持系统关键技术. 石油钻探技术, 43(2): 38-43, doi: 10.11911/syztjs.201502007.

     

    杨传书, 李昌盛, 孙旭东等. 2021. 人工智能钻井技术研究方法及其实践. 石油钻探技术, 49(5): 7-13, doi: 10.11911/syztjs.2020136.

     

    杨志力, 周路, 彭文利等. 2008. BP神经网络技术在声波测井曲线重构中的运用. 西南石油大学学报, 30(1): 63-66, doi: 10.3863/j.issn.1000-2634.2008.01.017.

     

    张军, 费海涛, 王崇敬等. 2011. 钻井远程决策支持系统开发及在元坝103H井的应用. 石油钻探技术, 39(6): 104-107, doi: 10.3969/j.issn.1001-0890.2011.06.024.

     

    赵庆, 刘岩生, 蒋宏伟等. 2013. 钻井实时监控与技术决策系统研发进展. 石油科技论坛, 32(3): 11-14, doi: 10.3969/j.issn.1002-302x.2013.03.003.

     

    赵彤, 葛云华, 周波等. 2019. 钻井业务物联网远程决策支持系统的现状与发展. 国际石油经济, 27(11): 93-97, doi: 10.3969/j.issn.1004-7298.2019.11.014.

  • 加载中

(8)

计量
  • 文章访问数:  3147
  • PDF下载数:  181
  • 施引文献:  0
出版历程
收稿日期:  2022-06-05
修回日期:  2022-11-21
上线日期:  2023-01-10

目录