2021年9月16日四川泸县MS6.0地震震区三维S波精细速度结构

吴萍萍, 李大虎, 詹艳, 郭慧丽, 刘雪华, 徐微, 杨歧焱, 鲁来玉, 丁志峰. 2023. 2021年9月16日四川泸县MS6.0地震震区三维S波精细速度结构. 地球物理学报, 66(6): 2386-2403, doi: 10.6038/cjg2022Q0403
引用本文: 吴萍萍, 李大虎, 詹艳, 郭慧丽, 刘雪华, 徐微, 杨歧焱, 鲁来玉, 丁志峰. 2023. 2021年9月16日四川泸县MS6.0地震震区三维S波精细速度结构. 地球物理学报, 66(6): 2386-2403, doi: 10.6038/cjg2022Q0403
WU PingPing, LI DaHu, ZHAN Yan, GUO HuiLi, LIU XueHua, XU Wei, YANG QiYan, LU LaiYu, DING ZhiFeng. 2023. Three-dimensional fine S-wave velocity structure around the source area of the Sichuan Luxian MS6.0 earthquake on September 16, 2021. Chinese Journal of Geophysics (in Chinese), 66(6): 2386-2403, doi: 10.6038/cjg2022Q0403
Citation: WU PingPing, LI DaHu, ZHAN Yan, GUO HuiLi, LIU XueHua, XU Wei, YANG QiYan, LU LaiYu, DING ZhiFeng. 2023. Three-dimensional fine S-wave velocity structure around the source area of the Sichuan Luxian MS6.0 earthquake on September 16, 2021. Chinese Journal of Geophysics (in Chinese), 66(6): 2386-2403, doi: 10.6038/cjg2022Q0403

2021年9月16日四川泸县MS6.0地震震区三维S波精细速度结构

  • 基金项目:

    中央级公益性科研院所基本科研业务专项(IGCEA2103), 中国地震局地球物理研究所基本业务专项(DQJB22B19, DQJB22B26)和四川省地震局地震科技专项(LY2218)联合资助

详细信息
    作者简介:

    吴萍萍, 女, 博士, 副研究员, 主要从事地震学和电磁学联合反演算法理论及应用研究.E-mail: wupingping2010@163.com

    通讯作者: 李大虎, 男, 博士, 研究员, 主要从事地震学、密集地震台阵观测和深部构造研究等工作.E-mail: lixiang2006@sina.com
  • 中图分类号: P315

Three-dimensional fine S-wave velocity structure around the source area of the Sichuan Luxian MS6.0 earthquake on September 16, 2021

More Information
  • 近年来, 四川盆地南缘(川南)中强地震频次增多和地震活动性增强, 2021年9月16日四川省泸州市泸县MS6.0地震的发生再次引起国内外学者对川南地区深部孕震环境和潜在地震危险性的密切关注.为了探究泸县6.0级地震震区的深部结构特征, 本文基于最新布设于震区70个短周期密集地震台站的观测资料, 采用背景噪声成像法构建了泸县MS6.0震区三维S波精细速度结构.研究结果表明, 研究区内喻家寺向斜和华蓥山断裂带东/西支深部速度结构表现明显非均匀性, 喻家寺向斜构造区在深度3.0 km内表现为低速, 随着深度增加, 速度逐渐增大.华蓥山断裂带东、西支除了存在局部低速非均匀体, 整体上表现为NE-SW展布的高速特征.泸县震源区西侧4.0~6.0 km深度呈现低速异常, 东侧则表现高速异常分布, 主震位于高低速分界带, 震区周边存在大范围的明显线状几何特征的地震分布, 震源深度优势分布层位主要集中在3.0~5.0 km之间.综合已有的资料分析, 主震西侧的低速异常区指示着该处可能存在流体, 推测泸县6.0级地震可能是在区域构造应力和流体扰动的作用下, 泸县震区的先存隐伏断层发生错动所致.

  • 加载中
  • 图 1 

    四川盆地南部地震活动分布图(观测时段:2012年1月—2022年4月)

    Figure 1. 

    Seismic activity distribution in South Sichuan Basin (Observation time: January 2012—April 2022)

    图 2 

    泸县震区地质构造背景图(据1 ∶ 20万地质图修改)

    Figure 2. 

    Tectonic background map of the Luxian earthquake source area (Modified according to 1 ∶ 200000 Geological Map)

    图 3 

    泸县震区及周边短周期密集地震观测台阵分布图

    Figure 3. 

    The layout of the short-period dense seismic observation array around the Luxian earthquake source area and its surrounding area

    图 4 

    部分台站对不同频带互相关形图

    Figure 4. 

    The cross-correlation functions in different frequency bands at some station pairs

    图 5 

    台间距为25.6 km台站对的Rayleigh波互相关波形(a) 及其群速度频散提取的时频分析(b)图

    Figure 5. 

    Cross-correlation waveform of Rayleigh wave (a) and its time-frequency spectrum analysis (b) of the group velocities at an interstation distance of 25.6 km

    图 6 

    部分台站对Rayleigh波基阶群速度频散曲线图

    Figure 6. 

    Fundamental mode of Rayleigh wave group velocity dispersion curves at some station pairs

    图 7 

    不同周期的二维WRL值空间分布及其频散数据统计图

    Figure 7. 

    The 2-D spatial distribution of the WRL values and its statistical histogram of the dispersions at different periods

    图 8 

    棋盘测试结果

    Figure 8. 

    The results of checkboard test

    图 9 

    群速度在周期3.2 s反演前后走时残差变化图

    Figure 9. 

    Variation of travel time residuals before and after inversion of the group velocities at the period of 3.2 s

    图 10 

    周期1.6、2.0、2.6、3.2、4.0、4.6、5.6和6.4 s面波二维群速度反演结果图

    Figure 10. 

    2-D Rayleigh wave group velocity maps at the periods of 1.6, 2.0, 2.6, 3.2, 4.0, 4.6, 5.6 and 6.4 s

    图 11 

    网格频散反演结果、数据拟合曲线和不同周期的深度敏感核函数图

    Figure 11. 

    Inversion results of grid dispersion, data fitting curves and depth sensitivity kernels at different periods

    图 12 

    不同深度S波速度和地震序列分布的水平切片图

    Figure 12. 

    Horizontal S-velocity slices and earthquake distribution at different depths

    图 13 

    泸县地震震区水平和垂直速度剖面图

    Figure 13. 

    Horizontal and vertical velocity profiles in Luxian earthquake source area

  •  

    Atkinson G M, Eaton D W, Igonin N. 2020. Developments in understanding seismicity triggered by hydraulic fracturing. Nature Reviews Earth & Environment, 1(5): 264-277, doi 10.1038/s43017-020-0049-7. doi: 10.1038/s43017-020-0049-7

     

    Bao X W, Eaton D W. 2016. Fault activation by hydraulic fracturing in western Canada. Science, 354(6318): 1406-1409, doi: 10.1126/science.aag2583.

     

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surfacewave dispersion measurements. Geophysical Journal International, 169(3): 1239-1260, doi: 10.1111/j.1365-246X.2007.03374.x.

     

    Caine J S, Evans J P, Forster C B. 1996. Fault zone architecture and permeability structure. Geology, 24(11): 1025-1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2

     

    Chang L J, Ding Z F, Wang C Y. 2015. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China. Chinese Journal of Geophysics (in Chinese), 58(11): 4052-4067, doi: 10.6038/cjg20151114.

     

    Ellsworth W L. 2013. Injection-induced earthquakes. Science, 341(6142): 1225942, doi: 10.1126/science.1225942.

     

    Ellsworth W L, Giardini D, Townend J, et al. 2019. Triggering ofthe Pohang, Korea, earthquake(MW5.5)by enhanced geothermal system stimulation. Seismological Research Letters, 90(5): 1844-1858, doi: 10.1785/0220190102.

     

    Evans J P, Forster C B, Goddard J V. 1997. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 19(11): 1393-1404, doi: 10.1016/S0191-8141(97)00057-6.

     

    Fan X L, Chen Q F, Guo Z. 2020. High-resolution Rayleigh-wave phase velocity structure beneath the Changbaishan volcanic field associated with its magmatic system. Acta Petrologica Sinica (in Chinese), 36(7): 2081-2091, doi: 10.18654/1000-0569/2020.07.10.

     

    Gao Y, Shi Y T, Chen A G. 2018. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the MS8.0 Wenchuan earthquake. Chinese Science Bulletin, 63(19): 1934-1948, doi: 10.1360/N972018-00317.

     

    Gao Y, Shi Y T, Wang Q. 2020. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances. Chinese Journal of Geophysics (in Chinese), 63(3): 802-816, doi: 10.6038/cjg2020O0003.

     

    Guo H L, Chang L J, Lu L Y, et al. 2022. High-resolution earthquake catalog for the focalarea of the Qinghai MadoiMS7.4 earthquake based on deep-learning phase picker and dense array. Chinese Journal of Geophysics (in Chinese), 65(5): 1628-1643, doi: 10.6038/cjg2022P0863.

     

    He H B. 2012. Geometry and kinematics structures of theHuayingshan Mountains: Implications to relationship between Central Sichuan and East Sichuan Block[Master's thesis] (in Chinese). Beijing: China University of Geoscience (Beijing).

     

    Herrmann R B. 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6): 1081-1088, doi: 10.1785/0220110096.

     

    Huang Q Y, Zha H S, Gao J, et al. 2021. Predicting the distribution of coalbed methane by ambient noise tomography with a dense seismic array. Chinese Journal of Geophysics (in Chinese), 64(11): 3997-4011, doi: 10.6038/cjg2021O0483.

     

    Institute of Earthquake Forecasting, China Earthquake Administration. 2021. A scientific investigation report on the MS6.0 Earthquake in Luxian County, Sichuan Province, 16 September 2021 (in Chinese). https://www.ief.ac.cn/dzkk/info/2022/42953.html.

     

    Kissling E, Ellsworth W L, Eberhart-Phillips D, et al. 1994. Initial reference models in local earthquake tomography. Journal of Geophysical Research: Solid Earth, 99(B10): 19635-19646, doi: 10.1029/93JB03138.

     

    Lei J S, Zhao D P. 2009. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (MS8.0). Geochemistry, Geophysics, Geosystems, 10(10): Q10010, doi: 10.1029/2009GC002590.

     

    Lei X L, Ma S L, Chen W K, et al. 2013. A detailed view of theinjection-induced seismicity in a natural gas reservoir in Zigong, Southwestern Sichuan Basin, China. Journal of Geophysical Research: Solid Earth, 118(8): 4296-4311, doi: 10.1002/jgrb.50310.

     

    Lei X L, Wang Z W, Su J R. 2019a. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in south Sichuan Basin induced by shale gas hydraulic fracturing. SeismologicalResearch Letters, 90(3): 1099-1110, doi: 10.1785/0220190029.

     

    Lei X L, Wang Z W, Su J R. 2019b. Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China. Earth and Planetary Physics, 3(6): 510-525, doi: 10.26464/epp2019052.

     

    Li C, Yao H J, Fang H J, et al. 2016. 3D near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei Urban Area, China. Seismological Research Letters, 87(4): 882-892, doi: 10.1785/0220150257.

     

    Li D H, Ding Z F, Wu P P, et al. 2019. Deep structure of the Zhaotong and Lianfeng fault zones in the eastern segment ofthe Sichuan-Yunnan border and the 2014 Ludian MS6.5 earthquake. Chinese Journal of Geophysics (in Chinese), 62(12): 4571-4587, doi: 10.6038/cjg2019M0450.

     

    Li D H, Zhan Y, Ding Z F, et al. 2021. Upper crustal velocity and seismogenic environment of the Changning MS6.0 earthquake region in Sichuan, China. Chinese Journal of Geophysics (in Chinese), 64(1): 18-35, doi: 10.6038/cjg2021O0241.

     

    Li H Y, Su W, Wang C Y, et al. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet. Earth and Planetary Science Letters, 282(1-4): 201-211, doi: 10.1016/j.epsl.2009.03.021.

     

    Li X Y, Lei X L, Li Q. 2016. Injection-induced fracturing process ina tight sandstone under different saturation conditions. Environmental Earth Sciences, 75(23): 1466, doi: 10.1007/s12665-016-6265-2.

     

    Liu L B, Chen Q F, Wang W J, et al. 2014. Ambient noise as the new source for urban engineering seismology and earthquake engineering: a case study from Beijing metropolitan area. Earthquake Science, 27(1): 89-100, doi: 10.1007/s11589-013-0052-x.

     

    Liu M, Zhang M, Zhu W Q, et al. 2020. Rapid characterization of the July 2019 Ridgecrest, California, earthquake sequence from raw seismic data using machine-learning phase picker. Geophysical Research Letters, 47(4): e2019GL086189, doi: 10.1029/2019GL086189.

     

    Morrow C, Shi L Q, Byerlee J. 1981. Permeability and strength of San Andreas Fault gouge under high pressure. GeophysicalResearch Letters, 8(4): 325-328, doi: 10.1029/GL008i004p00325.

     

    Parsons T, Ji C, Kirby E. 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 454(7203): 509-510, doi: 10.1038/nature07177.

     

    Qin T W, Lu L Y, Ding Z F, et al. 2022. High-resolution 3D shallow S wave velocity structure of Tongzhou, Subcenter ofBeijing, inferred from multimode Rayleigh waves by beamforming seismic noise at a dense array. Journal of Geophysical Research: Solid Earth, 127(5): e2021JB023689, doi: 10.1029/2021jb023689.

     

    Rawlinson N, Sambridge M. 2003. Seismic traveltime tomography of the crust and lithosphere. Advances in Geophysics, 46: 81-198, doi: 10.1016/S0065-2687(03)46002-0.

     

    Rawlinson N, Sambridge M. 2005. The fast marching method: An effective tool for tomographic imaging and tracking multiple phases in complex layered media. Exploration Geophysics, 36(4): 341-350, doi: 10.1071/eg05341.

     

    Schultz R, Atkinson G, Eaton D W, et al. 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in theDuvernay play. Science, 359(6373): 304-308, doi: 10.1126/science.aao0159.

     

    Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715): 1615-1618, doi: 10.1126/science.1108339.

     

    Sibson R H. 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211(1-4): 283-293, doi: 10.1016/0040-1951(92)90065-E.

     

    Toda S, Lin J, Meghraoui M, et al. 2008. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failurestress and seismicity rate on three major fault systems. Geophysical Research Letters, 35(17): L17305, doi: 10.1029/2008GL034903.

     

    Van der Baan M, Calixto F J. 2017. Human-induced seismicity and large-scale hydrocarbon production in the USA and Canada. Geochemistry, Geophysics, Geosystems, 18(7): 2467-2485, doi: 10.1002/2017GC006915.

     

    Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the NorthernHayward Fault, California. Bulletin of the Seismological Society of America, 90(6): 1353-1368, doi: 10.1785/0120000006.

     

    Wang W, Chen Q F. 2017. The crust S-wave velocity structureunder the Changbaishan volcano area in northeast China inferred fromambient noise tomography. Chinese Journal of Geophysics (in Chinese), 60(8): 3080-3095, doi: 10.6038/cjg20170816.

     

    Wang Z C, Zhao W Z, Peng H Y. 2002. Characteristics of multi-source petroleum systems in Sichuan basin. Petroleum Exploration and Development (in Chinese), 29(2): 26-28.

     

    Wessel P, Luis J F, Uieda L, et al. 2019. The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564, doi: 10.1029/2019GC008515.

     

    Xu T, Zhang M H, Tian X B, et al. 2014. Upper crustal velocity ofLijiang-Qingzhen profile and its relationship with the seismogenic environment of the MS6.5 Ludian earthquake. Chinese Journal ofGeophysics (in Chinese), 57(9): 3069-3079, doi: 10.6038/cjg20140932.

     

    Xu X W, Wen X Z, Ye J Q, et al. 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and Geology (in Chinese), 30(3): 597-629. http://www.researchgate.net/publication/291272812_The_Ms_80_wenchuan_earthquake_surface_ruptures_and_its_seismogenic_structure_in_Chinese

     

    Xu X W, Chen G H, Yu G H, et al. 2013. Seismogenic structure ofLushan earthquake and its relationship with Wenchuan earthquake. Earth Science Frontiers (in Chinese), 20(3): 11-20. http://www.researchgate.net/publication/286380586_Seismogenic_structure_of_Lushan_earthquake_and_its_relationship_with_Wenchuan_earthquake

     

    Yao H J, Van Der Hilst R D, De Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅰ. Phase velocity maps. Geophysical Journal International, 166(2): 732-744, doi: 10.1111/j.1365-246X.2006.03028.x.

     

    Yi G X, Long F, Liang M J, et al. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 SichuanChangning earthquake sequence. Chinese Journal of Geophysics (in Chinese), 62(9): 3432-3447, doi: 10.6038/cjg2019N0297.

     

    Yi G X, Long F, Liang M J, et al. 2020. Geometry and tectonicdeformation of seismogenicstructures in the Rongxian-Weiyuan-Zizhong region, Sichuan Basin: insights from focal mechanismsolutions. Chinese Journal of Geophysics (in Chinese), 63(9): 3275-3291, doi: 10.6038/cjg2020O0095.

     

    Yi G X, Zhao M, Long F, et al. 2021. Characteristics of the seismic sequence and seismogenic environment of the MS6.0 Sichuan Luxian earthquake on September 16, 2021. Chinese Journal of Geophysics (in Chinese), 64(12): 4449-4461, doi: 10.6038/cjg2021O0533.

     

    Yu G P, Xu T, Liu J D, et al. 2020. Late Mesozoic extensional structures and gold mineralization in Jiaodong Peninsula, eastern North China Craton: an inspiration from ambient noise tomography on data from a dense seismic array. Chinese Journal of Geophysics (in Chinese), 63(5): 1878-1893, doi: 10.6038/cjg2020N0446.

     

    Zang A, Zimmermann G, Hofmann H, et al. 2019. How to reducefluid-injection-induced seismicity. Rock Mechanics & Rock Engineering, 52(2): 475-493, doi: 10.1007/s00603-018-1467-4.

     

    Zhang M, Ellsworth W L, Beroza G C. 2019. Rapid earthquake association and location. Seismological Research Letters, 90(6): 2276-2284, doi: 10.1785/0220190052.s.

     

    Zhao D P, Kanamori H, Negishi H, et al. 1996. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at thehypocenter?. Science, 274(5294): 1891-1894, doi: 10.1126/science.274.5294.1891.

     

    Zhao D P, Kanamori H, Wiens D. 1997. State of stress before and after the 1994 Northridge earthquake. Geophysical Research Letters, 24(5): 519-522, doi: 10.1029/97GL00258.

     

    Zhao M, Tang L, Chen S, et al. 2021. Machine learning based automatic foreshock catalog building for the 2019 MS6.0 Changning, Sichuan earthquake. Chinese Journal of Geophysics (in Chinese), 64(1): 54-66, doi: 10.6038/cjg2021O0271.

     

    Zhao Z W. 2005. The regional tectonic characteristic of Southeast Sichuan basin and its control to oil and gas reservoir[Master's thesis] (in Chinese). Beijing: China University of Geosciences (Beijing).

     

    Zhu W Q, Beroza G C. 2019. PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1): 261-273. http://www.xueshufan.com/publication/2794417179

     

    Zuo K Z, Zhao C P, Zhang H J. 2020. 3D crustal structure and seismicity characteristics of Changning-Xingwen area in thesouthwestern Sichuan Basin, China. Bulletin of the Seismological Society of America, 110(5): 2154-2167, doi: 10.1785/0120200085.

     

    常利军, 丁志峰, 王椿镛. 2015. 南北构造带南段上地幔各向异性特征. 地球物理学报, 58(11): 4052-4067, doi: 10.6038/cjg20151114. http://www.geophy.cn/article/doi/10.6038/cjg20151114

     

    邓起东, 陈桂华, 朱艾澜. 2013. 双断坡, 双破裂, 坡中槽, 捩断层——复杂的汶川地震震源断裂结构及形成机制. //中国地球物理2013——第十六分会场论文集. 中国地球物理学会, 495-497.

     

    丁志峰. 2011. 中国地震科学台阵探测——南北地震带南段. 地震科技与国际交流, 2: 36-39.

     

    范兴利, 陈棋福, 郭震. 2020. 长白山火山区高精度Rayleigh面波相速度结构与岩浆系统. 岩石学报, 36(7): 2081-2091, doi: 10.18654/1000-0569/2020.07.10.

     

    高原, 石玉涛, 陈安国. 2018. 青藏高原东缘地震各向异性、应力及汶川地震影响. 科学通报, 63(19): 1934-1948, doi: 10.1360/N972018-00317.

     

    高原, 石玉涛, 王琼. 2020. 青藏高原东南缘地震各向异性及其深部构造意义. 地球物理学报, 63(3): 802-816, doi: 10.6038/cjg2020O0003. http://www.geophy.cn/article/doi/10.6038/cjg2020O0003

     

    郭慧丽, 常利军, 鲁来玉等. 2022. 基于深度学习震相拾取和密集台阵数据构建青海玛多MS7.4地震震源区高分辨率地震目录. 地球物理学报, 65(5): 1628-1643, doi: 10.6038/cjg2022P0863. http://www.geophy.cn/article/doi/10.6038/cjg2022P0863

     

    贺鸿冰. 2012. 华蓥山构造带的构造几何学与运动学及其对川东与川中地块作用关系的启示[硕士论文]. 北京: 中国地质大学(北京).

     

    黄宇奇, 查华胜, 高级等. 2021. 基于密集台阵地震背景噪声成像预测煤矿瓦斯分布. 地球物理学报, 64(11): 3997-4011, doi: 10.6038/cjg2021O0483. http://www.geophy.cn/article/doi/10.6038/cjg2021O0483

     

    李大虎, 丁志峰, 吴萍萍等. 2019. 川滇交界东段昭通、莲峰断裂带的深部结构特征与2014年鲁甸MS6.5地震. 地球物理学报, 62(12): 4571-4587, doi: 10.6038/cjg2019M0450. http://www.geophy.cn/article/doi/10.6038/cjg2019M0450

     

    李大虎, 詹艳, 丁志峰等. 2021. 四川长宁MS6.0地震震区上地壳速度结构特征与孕震环境. 地球物理学报, 64(1): 18-35, doi: 10.6038/cjg2021O0241. http://www.geophy.cn/article/doi/10.6038/cjg2021O0241

     

    四川省地质局. 1980. 区域地质报告(遂宁幅、自贡幅、内江幅、宜宾幅、泸州幅). 成都: 四川省地质局.

     

    王武, 陈棋福. 2017. 长白山火山区地壳S波速度结构的背景噪声成像. 地球物理学报, 60(8): 3080-3095, doi: 10.6038/cjg20170816. http://www.geophy.cn/article/doi/10.6038/cjg20170816

     

    汪泽成, 赵文智, 彭红雨. 2002. 四川盆地复合含油气系统特征. 石油勘探与开发, 29(2): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200202007.htm

     

    徐涛, 张明辉, 田小波等. 2014. 丽江-清镇剖面上地壳速度结构及其与鲁甸MS6.5级地震孕震环境的关系. 地球物理学报, 57(9): 3069-3079, doi: 10.6038/cjg20140932. http://www.geophy.cn/article/doi/10.6038/cjg20140932

     

    徐锡伟, 闻学泽, 叶建青等. 2008. 汶川MS8.0地震地表破裂带及其发震构造. 地震地质, 30(3): 597-629. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200803003.htm

     

    徐锡伟, 陈桂华, 于贵华等. 2013. 芦山地震发震构造及其与汶川地震关系讨论. 地学前缘, 20(3): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303002.htm

     

    易桂喜, 龙锋, 梁明剑等. 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析. 地球物理学报, 62(9): 3432-3447, doi: 10.6038/cjg2019N0297. http://www.geophy.cn/article/doi/10.6038/cjg2019N0297

     

    易桂喜, 龙锋, 梁明剑等. 2020. 四川盆地荣县-威远-资中地区发震构造几何结构与构造变形特征: 基于震源机制解的认识和启示. 地球物理学报, 63(9): 3275-3291, doi: 10.6038/cjg2020O0095. http://www.geophy.cn/article/doi/10.6038/cjg2020O0095

     

    易桂喜, 赵敏, 龙锋等. 2021. 2021年9月16日四川泸县MS6.0地震序列特征及孕震构造环境. 地球物理学报, 64(12): 4449-4461, doi: 10.6038/cjg2021O0533. http://www.geophy.cn/article/doi/10.6038/cjg2021O0533

     

    俞贵平, 徐涛, 刘俊彤等. 2020. 胶东地区晚中生代伸展构造与金成矿: 短周期密集台阵背景噪声成像的启示. 地球物理学报, 63(5): 1878-1893, doi: 10.6038/cjg2020N0446. http://www.geophy.cn/article/doi/10.6038/cjg2020N0446

     

    赵明, 唐淋, 陈石等. 2021. 基于深度学习到时拾取自动构建长宁地震前震目录. 地球物理学报, 64(1): 54-66, doi: 10.6038/cjg2021O0271. http://www.geophy.cn/article/doi/10.6038/cjg2021O0271

     

    赵正望. 2005. 川东南地区构造特征及其对油气成藏的控制作用[硕士论文]. 北京: 中国地质大学.

     

    中国地震局地震预测研究所. 2021. 2021年9月16日四川泸县6.0级地震科学考察报告. https://www.ief.ac.cn/dzkk/info/2022/42953.html.

  • 加载中

(13)

计量
  • 文章访问数:  2410
  • PDF下载数:  257
  • 施引文献:  0
出版历程
收稿日期:  2022-06-01
修回日期:  2022-09-16
上线日期:  2023-06-10

目录