利用接收函数、背景噪声频散和Rayleigh波ZH振幅比联合反演青藏高原东北缘及周边地区地壳结构

高天扬, 丁志峰, 徐小明, 王兴臣. 2023. 利用接收函数、背景噪声频散和Rayleigh波ZH振幅比联合反演青藏高原东北缘及周边地区地壳结构. 地球物理学报, 66(10): 4074-4094, doi: 10.6038/cjg2022Q0177
引用本文: 高天扬, 丁志峰, 徐小明, 王兴臣. 2023. 利用接收函数、背景噪声频散和Rayleigh波ZH振幅比联合反演青藏高原东北缘及周边地区地壳结构. 地球物理学报, 66(10): 4074-4094, doi: 10.6038/cjg2022Q0177
GAO TianYang, DING ZhiFeng, XU XiaoMing, WANG XingChen. 2023. Joint inversion of receiver function, ambient noise dispersion, and Rayleigh wave ZH ratio for the crustal structure beneath the northeastern margin of the Tibetan plateau and its surrounding regions. Chinese Journal of Geophysics (in Chinese), 66(10): 4074-4094, doi: 10.6038/cjg2022Q0177
Citation: GAO TianYang, DING ZhiFeng, XU XiaoMing, WANG XingChen. 2023. Joint inversion of receiver function, ambient noise dispersion, and Rayleigh wave ZH ratio for the crustal structure beneath the northeastern margin of the Tibetan plateau and its surrounding regions. Chinese Journal of Geophysics (in Chinese), 66(10): 4074-4094, doi: 10.6038/cjg2022Q0177

利用接收函数、背景噪声频散和Rayleigh波ZH振幅比联合反演青藏高原东北缘及周边地区地壳结构

  • 基金项目:

    国家自然科学基金项目(41941016-01,4194100040,41974100),科技部重大研究项目专题(2019QZKK0701)和中国地震局地球物理研究所基本科研业务专项(DQJB21B32)联合资助

详细信息
    作者简介:

    高天扬, 男, 1995年生, 博士, 主要从事地球内部结构方面的研究.E-mail: gaoty@cea-igp.ac.cn

    通讯作者: 丁志峰, 男, 1962年生, 博士生导师、研究员, 主要从事地震学、地球内部结构及动力学方面的研究.E-mail: dingzf@cea-igp.ac.cn
  • 中图分类号: P315

Joint inversion of receiver function, ambient noise dispersion, and Rayleigh wave ZH ratio for the crustal structure beneath the northeastern margin of the Tibetan plateau and its surrounding regions

More Information
  • 本文对在青藏高原东北缘及邻近地区架设的571套宽频带流动地震台站记录到的连续波形数据进行处理,通过联合反演P波接收函数、背景噪声频散和Rayleigh波ZH振幅比,获得了研究区高分辨率三维地壳S波速度(VS)结构.研究结果显示,松潘—甘孜块体和西秦岭造山带以及北祁连造山带下方15~40 km的深度范围内存在很显著的S波低速异常体.其中,松潘—甘孜块体和西秦岭造山带下方的低速异常体很可能与部分熔融有关,且造成部分熔融的原因除了剪切加热外,还有可能是软流圈物质上涌和地壳内部的放射生热.而北祁连造山带的低速异常体则可能由地表隆升和地壳增厚所造成.阿拉善块体内部分布有很多不太显著的低速异常体,这可能与阿拉善块体经历了复杂的构造变形有关.在银川—河套地堑下方20~35 km的深度范围内同样观测到了相对不太显著的低速异常体,这更可能与基性岩浆的底侵作用有关.

  • 加载中
  • 图 1 

    (a) 青藏高原东北缘及周边地区的地形与地质单元分布图;(b) 研究所使用的宽频带流动地震台站位置图

    Figure 1. 

    (a) The topography and tectonic sketch map of the NE margin of the Tibetan plateau and surrounding regions; (b) Locations of broad-band temporary seismic stations used in this study

    图 2 

    (a) 周期范围为5~50 s的Rayleigh波相速度频散曲线;(b) 每个周期点Rayleigh波相速度频散曲线条数

    Figure 2. 

    (a) Phase velocity dispersion curves of Rayleigh wave within the period band 5~50 s; (b) Numbers of phase velocity dispersion measurements of Rayleigh wave at each period

    图 3 

    运用L曲线法估计最佳平滑参数和阻尼参数

    Figure 3. 

    L-curve method is used to determine the optimal smoothing parameter and damping parameter

    图 4 

    (a)、(d)和(g)分别表示在10 s、24 s和32 s周期的射线覆盖情况;(b)、(e)和(h)分别表示10 s、24 s和32 s周期的检测板测试恢复结果,其中红色虚线表示最终确定的层析成像范围;(a)、(d)和(g)中的红色圆点和(b)、(e)和(h)中的黑色圆点为研究区内的流动地震台站;(c)、(f)和(i)分别表示10 s、24 s和32 s周期的Vsv分布;(a)—(i)中的蓝色实线和黑色虚线所表示的含义与图 1的相同

    Figure 4. 

    (a), (d) and (g) represent the ray path coverage at 10 s, 24 s and 32 s, respectively. (b), (e) and (h) represent the recovered checkerboard tests at 10 s, 24 s and 32 s, respectively, where red dashed lines enclose the well-resolved range of the final tomography; The red solid dots in (a), (d) and (g) and black solid dots in (b), (e) and (h) denote temporary seismic stations in the study region; (c), (f) and (i) represent the Vsv maps at 10 s, 24 s and 32 s, respectively; The meanings of the blue solid lines and black dashed lines in (a)—(i) are same as those in Fig. 1

    图 5 

    计算接收函数(a)和ZH振幅比(b)所用到的远震事件的震中分布

    Figure 5. 

    Epicentral distribution of teleseismic events for receiver functions (a) and ZH ratio (b) in this study

    图 6 

    台站15590(a)和51542(b)(台站位置如图 1b中的红色三角形所示)计算得到的径向接收函数结果

    Figure 6. 

    Radial receiver functions of stations 15590 (a) and 51542 (b) (The location of the stations is shown in the red triangles in Fig. 1b)

    图 7 

    台站15590的ZH振幅比计算结果

    Figure 7. 

    ZH ratios of measurements at station 15590

    图 8 

    (a) 计算深度敏感核所使用的一维速度模型,该模型是由Shen等(2016)的速度模型在本文区范围内进行平均所得;(b) 周期为5 s、20 s、35 s和50 s的Rayleigh波相速度对VS随深度的敏感核函数;(c) 周期为12 s、20 s、30 s和40 s的Rayleigh波ZH振幅比对VS随深度的敏感核函数

    Figure 8. 

    The 1D velocity model used to calculate depth sensitivity is obtained by averaging the velocity model of Shen et al. (2016) in the study region; (b) Depth sensitivity to VS for Rayleigh wave phase velocity at periods of 5 s, 20 s, 35 s, and 50 s; (c) Depth sensitivity to VS for Rayleigh wave ZH ratio at periods of 12 s, 20 s, 30 s, and 40 s

    图 9 

    研究区在20 s和40 s周期的Rayleigh波ZH振幅比(a和c)及误差(b和d)分布图

    Figure 9. 

    Example maps of the Rayleigh wave ZH ratio in the study region at 20 s (a) and 40 s (c) period. Associated uncertainties in ZH ratio are also presented in (b) and (d)

    图 10 

    联合反演位于鄂尔多斯块体的62389台站(台站位置如图 1b中的绿色三角形所示)下方的VS结构

    Figure 10. 

    Example of the joint inversion at station 62389 in the Ordos block (The location of the station is shown in the green triangle in Fig. 1b)

    图 11 

    联合反演位于北祁连造山带的63038台站(台站位置如图 1b中的绿色三角形所示下方的VS结构

    Figure 11. 

    Example of the joint inversion at station 63038 in the northern Qilian orogen (The location of the station is shown in the green triangle in Fig. 1b)

    图 12 

    不同深度绝对VS值的水平分布

    Figure 12. 

    Horizontal variation in the absolute VS at different depths

    图 13 

    沿5条剖面的绝对VS垂直切片,剖面位置如(a)中的黑色虚线所示

    Figure 13. 

    Vertical cross-sections of absolute VS along five profiles, and the position of sections are marked by black dashed lines in (a)

    图 14 

    本文与Wang等(2020)在4 km深度的VS水平异常分布

    Figure 14. 

    Maps of horizontal VS perturbation between ours and Wang et al. (2020)′s results at 4 km depth

  •  

    Ammon C J, Randall G E, Zandt G. 1990. On the nonuniqueness of receiver function inversions. Journal of Geophysical Research: Solid Earth, 95(B10): 15303-15318, doi: 10.1029/JB095iB10p15303.

     

    Aster R C, Borchers B, Thurber C H. 2013. Parameter Estimation and Inverse Problems. 3rd ed. Amsterdam: Elsevier. doi: 10.1016/C2009-0-61134-X.

     

    Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5): 358-362, doi: 10.1038/NGEO830.

     

    Bao X W, Song X D, Xu M J, et al. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan plateau and its tectonic implications. Earth and Planetary Science Letters, 369-370: 129-137, doi: 10.1016/j.epsl.2013.03.015.

     

    Bao X W, Sun X X, Xu M J, et al. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth and Planetary Science Letters, 415: 16-24, doi: 10.1016/j.epsl.2015.01.020.

     

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3): 1239-1260, doi: 10.1111/j.1365-246X.2007.03374.x.

     

    Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the earth′s crust. Bulletin of the Seismological Society of America, 95(6): 2081-2092, doi: 10.1785/0120050077.

     

    Cheng B, Zhao D P, Cheng S Y, et al. 2016. Seismic tomography and anisotropy of the Helan-Liupan tectonic belt: Insight into lower crustal flow and seismotectonics. Journal of Geophysical Research: Solid Earth, 121(4): 2608-2635, doi: 10.1002/2015JB012692.

     

    Chong J J, Ni S D, Zhao L, et al. 2014. Joint inversion of crustal structure with the Rayleigh wave phase velocity dispersion and the ZH ratio. Pure and Applied Geophysics, 172(10): 2585-2600, doi: 10.1007/s00024-014-0902-z.

     

    Clark M K, Bush J W M, Royden L H. 2005. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophysical Journal International, 162(2): 575-590, doi: 10.1111/j.1365-246X.2005.02580.x.

     

    Clark M K, Farley K A, Zheng D W, et al. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth and Planetary Science Letters, 296(1-2): 78-88, doi: 10.1016/j.epsl.2010.04.051.

     

    Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706, doi: 10.1130/0091-7613(2000)28〈703:TOBTEM〉2.0.CO;2.

     

    England P, Houseman G. 1989. Extension during continental convergence, with application to the Tibetan Plateau. Journal of Geophysical Research, 94(B12): 17561-17579, doi: 10.1029/JB094iB12p17561.

     

    England P, Housman G. 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone. Journal of Geophysical Research: Solid Earth, 91(B3): 3664-3676, doi: 10.1029/JB091iB03p03664.

     

    Fleitout L, Froidevaux C. 1980. Thermal and mechanical evolution of shear zones. Journal of Structural Geology, 2(1-2): 159-164, doi: 10.1016/0191-8141(80)90046-2.

     

    Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research, 112(B8): B08416, doi: 10.1029/2005JB004120.

     

    Gao T Y, Ding Z F, Wang X C, et al. 2021. Joint inversion of receiver function, Rayleigh wave dispersion and ZH ratio for crustal structure in Southeast Tibetan Plateau and its implications for dynamics. Chinese Journal of Geophysics (in Chinese), 64(6): 1885-1906, doi: 10.6038/cjg2021O0282.

     

    Ge C, Zheng Y, Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China Craton. Chinese Journal of Geophysics (in Chinese), 54(10): 2538-2548, doi: 10.3969/j.issn.0001-5733.2011.10.011.

     

    Hao S J, Huang Z C, Han C R, et al. 2021. Layered crustal azimuthal anisotropy beneath the northeastern Tibetan Plateau revealed by Rayleigh-wave Eikonal tomography. Earth and Planetary Science Letters, 563: 116891, doi: 10.1016/j.epsl.2021.116891.

     

    Jiang C X, Yang Y J, Zheng Y. 2014. Penetration of mid-crustal low velocity zone across the Kunlun fault in the NE Tibetan Plateau revealed by ambient noise tomography. Earth and Planetary Science Letters, 406: 81-92, doi: 10.1016/j.epsl.2014.08.040.

     

    Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the earth from travel times. Geophysical Journal International, 122(1): 108-124, doi: 10.1111/j.1365-246X.1995.tb03540.x

     

    Klemperer S L. 2006. Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geological Society London, Special Publications, 268(1): 39-70, doi: 10.1144/GSL.SP.2006.268.01.03.

     

    Le Pichon X, Fournier M, Jolivet L. 1992. Kinematics topography, shortening, and extrusion in the India-Eurasia collision. Tectonics, 11(6): 1085-1098, doi: 10.1029/92TC01566.

     

    Leloup P H, Ricard Y, Battaglia J, et al. 1999. Shear heating in continental strike-slip shear zones: Model and field examples. Geophysical Journal International, 136(1): 19-40, doi: 10.1046/j.1365-246X.1999.00683.x.

     

    Li H Y, Shen Y, Huang Z X, et al. 2014. The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography. Journal of Geophysical Research: Solid Earth, 119(3): 1954-1970, doi: 10.1002/2013JB010374.

     

    Li L, Li A B, Murphy M A, et al. 2016a. Radial anisotropy beneath northeast Tibet, implications for lithosphere deformation at a restraining bend in the Kunlun fault and its vicinity. Geochemistry, Geophysics, Geosystems, 17(9): 3674-3690, doi: 10.1002/2016GC006366.

     

    Li M K, Zhang S X, Wang F, et al. 2016b. Crustal and upper-mantle structure of the southeastern Tibetan Plateau from joint analysis of surface wave dispersion and receiver functions. Journal of Asian Earth Sciences, 117: 52-63, doi: 10.1016/j.jseaes.2015.12.002.

     

    Li Y H, Pan J T, Wu Q J, et al. 2017. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino- Korea craton revealed by Rayleigh wave tomography. Geophysical Journal International, 210(2): 570-584, doi: 10.1093/gji/ggx181.

     

    Li Y H, Wu Q J, An Z H, et al. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions. Chinese Journal of Geophysics (in Chinese), 49(5): 1359-1368. doi: 10.3321/j.issn:0001-5733.2006.05.015

     

    Ligorría J P, Ammon C J. 1999. Iterative deconvolution and receiver function estimation. Bulletin of the Seismological Society of America, 89 (5): 1395-1400. doi: 10.1785/BSSA0890051395

     

    Lin F C, Moschetti M P, Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1): 281-298, doi: 10.1111/j.1365-246X.2008.03720.x.

     

    Lin F C, Schmandt B, Tsai V C. 2012. Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray: constraining velocity and density structure in the upper crust. Geophysical Research Letters, 39(12): L12303, doi: 10.1029/2012GL052196.

     

    Meyer B, Tapponnier P, Bourjot L, et al. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 135(1): 1-47, doi: 10.1046/j.1365-246X.1998.00567.x.

     

    Pan J T, Li Y H, Wu Q J, et al. 2017. Phase velocity maps of Rayleigh wave based on a dense coverage and portable seismic array in NE Tibetan plateau and its adjacent regions. Chinese Journal of Geophysics (in Chinese), 60(6): 2291-2303, doi: 10.6038/cjg20170621.

     

    Pan S Z, Niu F L. 2011. Large contrasts in crustal structure and composition between the Ordos Plateau and the NE Tibetan Plateau from receiver function analysis. Earth and Planetary Science Letters, 303(3-4): 291-298, doi: 10.1016/j.epsl.2011.01.007.

     

    Pei D H, Louie J N, Pullammanappallil S K. 2008. Improvements on computation of phase velocities of Rayleigh waves based on the generalized R/T coefficient method. Bulletin of the Seismological Society of America, 98: 280-287. doi: 10.1785/0120070057

     

    Qiao L, Yao H J, Lai Y C, et al. 2018. Crustal structure of southwest China and northern Vietnam from ambient noise tomography: implication for the large-scale material transport model in SE Tibet. Tectonics, 37(5): 1492-1506, doi: 10.1029/2018TC004957.

     

    Rawlinson N, Sambridge M. 2005. The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media. Exploration Geophysics, 36(4): 341-350, doi: 10.1071/eg05341.

     

    Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in Eastern Tibet. Science, 276(5313): 788-790, doi: 10.1126/science.276.5313.788.

     

    Royden L. 1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. Journal of Geophysical Research: Solid Earth, 101(B8): 17679-17705, doi: 10.1029/96JB00951.

     

    Shen W S, Ritzwoller M H, Kang D, et al. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophysical Journal International, 206(2): 954-979, doi: 10.1093/gji/ggw175.

     

    Tan J, Li H Y, Li X F, et al. 2015. Radial anisotropy in the crust beneath the northeastern Tibetan Plateau from ambient noise tomography. Journal of Earth Science, 26(6): 864-871, doi: 10.1007/s12583-015-0543-x.

     

    Tanimoto T, Alvizuri C. 2006. Inversion of the HZ ratio of microseisms for S-wave velocity in the crust. Geophysical Journal International, 165(1): 323-335, doi: 10.1111/j.1365-246X.2006.02905.x.

     

    Tanimoto T, Rivera L. 2008. The ZH ratio method for long-period seismic data: Sensitivity kernels and observational techniques. Geophysical Journal International, 172(1): 187-198, doi: 10.1111/j.1365-246X.2007.03609.x.

     

    Tapponnier P, Molnar P. 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264(5584): 319-324, doi: 10.1038/264319a0.

     

    Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12): 611-616, doi: 10.1130/0091-7613(1982)10〈611:PETIAN〉2.0.CO;2.

     

    Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677, doi: 10.1126/science.105978.

     

    Tarantola A, Valette B. 1982. Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics, 20(2): 219-232, doi: 10.1029/RG020i002p00219.

     

    Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5(3): 199-214, doi: 10.1130/GES00217.1.

     

    Tian X B, Liu Z, Si S K, et al. 2014. The crustal thickness of NE Tibet and its implication for crustal shortening. Tectonophysics, 634: 198-207, doi: 10.1016/j.tecto.2014.07.001.

     

    Tseng T L, Chen W P, Nowack R L. 2009. Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophysical Research Letters, 36(24): L24304, doi: 10.1029/2009GL040457.

     

    Wang C S, Gao R, Yin A, et al. 2011. A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet. Earth and Planetary Science Letters, 306(3-4): 279-288, doi: 10.1016/j.epsl.2011.04.010.

     

    Wang C Y, Flesch L M, Silver P G, et al. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5): 363-366, doi: 10.1130/G24450A.1.

     

    Wang C Y, Sandvol E, Zhu L, et al. 2014. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications. Earth and Planetary Science Letters, 387: 198-211, doi: 10.1016/j.epsl.2013.11.033.

     

    Wang K M, Lu L Y, Maupin V, et al. 2020. Surface wave tomography of Northeastern Tibetan Plateau using beamforming of seismic noise at a dense array. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB018416, doi: 10.1029/2019JB018416.

     

    Wang Q, Niu F L, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan Plateau constrained by teleseismic receiver function data. Geophysical Journal International, 204(1): 167-179, doi: 10.1093/gji/ggv420.

     

    Wang X C, Ding Z F, Wu Y, et al. 2017. Crustal thicknesses and Poisson′s ratios beneath the northern section of the north-south seismic belt and surrounding areas in China. Chinese Journal of Geophysics (in Chinese), 60(6): 2080-2090, doi: 10.6038/cjg20170605.

     

    Wang X C, Li Y H, Ding Z F, et al. 2017. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton. Journal of Geophysical Research: Solid Earth, 122(8): 6703-6720, doi: 10.1002/2017JB014203.

     

    Wang Y. 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation. Physics of the Earth and Planetary Interiors, 126(3-4): 121-146, doi: 10.1016/S0031-9201(01)00251-5.

     

    Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic mapping tools: Improved version released. Eos, Transactions American Geophysical Union, 94(45): 409-410, doi: 10.1002/2013EO450001.

     

    Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union, 79(47): 579-579, doi: 10.1029/98EO00426.

     

    Xia S R, Shi L, Li Y H, et al. 2021. Velocity structures of the crust and uppermost mantle beneath the northeastern margin of Tibetan plateau revealed by double-difference tomography. Chinese Journal of Geophysics (in Chinese), 64(9): 3194-3206, doi: 10.6038/cjg2021O0514.

     

    Xiao Q B, Zhang J, Wang J J, et al. 2012. Electrical resistivity structures between the Northern Qilian Mountains and Beishan Block, NW China, and tectonic Implications. Physics of the Earth and Planetary Interiors, 200-201: 92-104, doi: 10.1016/j.pepi.2012.04.008.

     

    Xie J Y, Ritzwoller M H, Shen W S, et al. 2013. Crustal radial anisotropy across eastern Tibet and the western Yangtze Craton. Journal of Geophysical Research: Solid Earth, 118(8): 4226-4252, doi: 10.1002/jgrb.50296.

     

    Xin H L, Zhang H J, Kang M, et al. 2019. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography. Seismological Research Letters, 90(1): 229-241, doi: 10.1785/0220180209.

     

    Xu L L, Rondenay S, van der Hilst R D. 2007. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Physics of the Earth and Planetary Interiors, 165(3-4): 176-193, doi: 10.1016/J.PEPI.2007.09.002.

     

    Xu X M, Niu F L, Ding Z F, et al. 2018. Complicated crustal deformation beneath the NE margin of the Tibetan plateau and its adjacent areas revealed by multi-station receiver-function gathering. Earth and Planetary Science Letters, 497: 204-216, doi: 10.1016/j.epsl.2018.06.010.

     

    Yang Y J, Ritzwoller M H, Levshin A L, et al. 2007. Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1): 259-274, doi: 10.1111/j.1365-246X.2006.03203.x.

     

    Yang Y J, Ritzwoller M H, Zheng Y, et al. 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. Journal Geophysical Research: Solid Earth, 117(B4): B04303, doi: 10.1029/2011JB008810.

     

    Yang Y, Yao H J, Wu H X, et al. 2020. A new crustal shear-velocity model in Southwest China from joint seismological inversion and its implications for regional crustal dynamics. Geophysical Journal International, 220(2): 1379-1393, doi: 10.1093/gji/ggz514.

     

    Yano T, Tanimoto T, Rivera L. 2009. The ZH ratio method for long- period seismic data: inversion for S-wave velocity structure. Geophysical Journal International, 179(1): 413-424, doi: 10.1111/j.1365-246X.2009.04293.x.

     

    Yao H J, Van der Hilst R D, de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps. Geophysical Journal International, 166(2): 732-744, doi: 10.1111/j.1365-246X.2006.03028.x.

     

    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan- Tibetan orogen. Annual Review of Earth and planetary Sciences, 28(1): 211-280, doi: 10.1146/annurev.earth.28.1.211.

     

    Yuan X H, Ni J, Kind R, et al. 1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. Journal of Geophysical Research: Solid Earth, 102(B12): 27491-27500, doi: 10.1029/97JB02379.

     

    Yuan Y, Yao H J, Qin Y. 2016. Joint inversion of Rayleigh wave vertical-horizontal amplitude ratios and dispersion based on the Neighborhood Algorithm and its application. Chinese Journal of Geophysics (in Chinese), 59(3): 959-971, doi: 10.6038/cjg20160318.

     

    Zhang F X, Wu Q J, Li Y H, et al. 2018. Seismic tomography of eastern Tibet: Implications for the Tibetan Plateau growth. Tectonics, 37(9): 2833-2847, doi: 10.1029/2018TC004977.

     

    Zhang H S, Gao R, Tian X B, et al. 2015. Crustal S wave velocity beneath the northeastern Tibetan plateau inferred from teleseismic P wave receiver functions. Chinese Journal of Geophysics (in Chinese), 58(11): 3982-3992, doi: 10.6038/cjg20151108.

     

    Zhang P, Yao H J. 2017. Stepwise joint inversion of surface wave dispersion, Rayleigh wave ZH ratio, and receiver function data for 1D crustal shear wave velocity structure. Earthquake Science, 30(5-6): 229-238, doi: 10.1007/s11589-017-0197-0.

     

    Zhang Z Q, Yao H J, Yang Y. 2020. Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications. Science China Earth Sciences, 63(9): 1278-1293, doi: 10.1007/s11430-02009625-3.

     

    Zhao L F, Xie X B, He J K, et al. 2013. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography. Earth and Planetary Science Letters, 383: 113-122, doi: 10.1016/j.epsl.2013.09.038.

     

    Zhao L Q, Zhan Y, Chen X B, et al. 2015. Deep electrical structure of the central West Qinling orogenic belt and blocks on its either side. Chinese Journal of Geophysics (in Chinese), 58(7): 2460-2472, doi: 10.6038/cjg20150722.

     

    Zheng C, Ding Z F, Song X D. 2018. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath the northern north-south seismic zone. Chinese Journal of Geophysics (in Chinese), 61(4): 1211-1224, doi: 10.6038/cjg2018L0443.

     

    Zheng T, Gao S S, Ding Z F, et al. 2021. Crustal azimuthal anisotropy and deformation beneath the northeastern Tibetan Plateau and adjacent areas: Insights from receiver function analysis. Tectonophysics, 816: 229014, doi: 10.1016/j.tecto.2021.229014.

     

    Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105 (B2): 2969-2980, doi: 10.1029/1999jb900322.

     

    高天扬, 丁志峰, 王兴臣等. 2021. 利用接收函数、面波频散和ZH振幅比联合反演青藏高原东南缘地壳结构及其动力学意义. 地球物理学报, 64(6): 1885-1906, doi: 10.6038/cjg2021O0282.

     

    葛粲, 郑勇, 熊熊. 2011. 华北地区地壳厚度与泊松比研究. 地球物理学报, 54(10): 2538-2548, doi: 10.3969/j.issn.0001-5733.2011.10.011.

     

    李永华, 吴庆举, 安张辉等. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义. 地球物理学报, 49(5): 1359-1368. doi: 10.3321/j.issn:0001-5733.2006.05.015

     

    潘佳铁, 李永华, 吴庆举等. 2017. 基于密集流动地震台阵的青藏高原东北缘及邻区Rayleigh波相速度层析成像. 地球物理学报, 60(6): 2291-2303, doi: 10.6038/cjg20170621.

     

    王兴臣, 丁志峰, 武岩等. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究. 地球物理学报, 60(6): 2080-2090, doi: 10.6038/cjg20170605.

     

    夏思茹, 石磊, 李永华等. 2021. 青藏高原东北缘地壳及上地幔顶部速度结构研究. 地球物理学报, 64(9): 3194-3206, doi: 10.6038/cjg2021O0514.

     

    袁艺, 姚华建, 秦岩. 2016. 基于邻域算法的瑞利面波垂直-水平振幅比及频散曲线联合反演及应用. 地球物理学报, 59(3): 959-971, doi: 10.6038/cjg20160318.

     

    张洪双, 高锐, 田小波等. 2015. 青藏高原东北缘地壳S波速度结构及其动力学含义—远震接收函数提供的证据. 地球物理学报, 58(11): 3982-3992, doi: 10.6038/cjg20151108.

     

    张智奇, 姚华建, 杨妍. 2020. 青藏高原东南缘地壳上地幔三维S波速度结构及动力学意义. 中国科学: 地球科学, 50(9): 1242-1258, doi: 10.1360/SSTe-2020-0016.

     

    赵凌强, 詹艳, 陈小斌等. 2015. 西秦岭造山带(中段)及其两侧地块深部电性结构特征. 地球物理学报, 58(7): 2460-2472, doi: 10.6038/cjg20150722.

     

    郑晨, 丁志峰, 宋晓东. 2018. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构. 地球物理学报, 61(4): 1211-1224, doi: 10.6038/cjg2018L0443.

  • 加载中

(14)

计量
  • 文章访问数:  2083
  • PDF下载数:  261
  • 施引文献:  0
出版历程
收稿日期:  2022-03-18
修回日期:  2022-06-10
上线日期:  2023-10-10

目录