不同地球模型对中国陆区大气负荷位移建模的影响

李长海, 钟萍, 姜中山, 汤苗, 杨兴海, 由晓文. 2023. 不同地球模型对中国陆区大气负荷位移建模的影响. 地球物理学报, 66(3): 973-985, doi: 10.6038/cjg2022Q0016
引用本文: 李长海, 钟萍, 姜中山, 汤苗, 杨兴海, 由晓文. 2023. 不同地球模型对中国陆区大气负荷位移建模的影响. 地球物理学报, 66(3): 973-985, doi: 10.6038/cjg2022Q0016
LI ChangHai, ZHONG Ping, JIANG ZhongShan, TANG Miao, YANG XingHai, YOU XiaoWen. 2023. The influence of different earth models on atmospheric load displacement modeling in Chinese continent. Chinese Journal of Geophysics (in Chinese), 66(3): 973-985, doi: 10.6038/cjg2022Q0016
Citation: LI ChangHai, ZHONG Ping, JIANG ZhongShan, TANG Miao, YANG XingHai, YOU XiaoWen. 2023. The influence of different earth models on atmospheric load displacement modeling in Chinese continent. Chinese Journal of Geophysics (in Chinese), 66(3): 973-985, doi: 10.6038/cjg2022Q0016

不同地球模型对中国陆区大气负荷位移建模的影响

  • 基金项目:

    国家自然科学基金(42074021,41904015)资助

详细信息
    作者简介:

    李长海, 男, 1998年生, 硕士生, 主要研究方向为大地测量学.E-mail: chhli@my.swjtu.edu.cn

    通讯作者: 钟萍, 女, 1980年生, 副教授, 主要研究方向为GNSS数据处理和地壳动力学.E-mail: zp@swjtu.edu.cn
  • 中图分类号: P223

The influence of different earth models on atmospheric load displacement modeling in Chinese continent

More Information
  • 目前进行质量负荷位移建模时通常使用的是全球或区域平均的一维地球模型,这类地球模型无法反映地壳结构的局部差异,如地壳厚度、地震波波速等.本文利用地表气压再分析数据产品NCEP/NCAR Reanalysis 1(NCEP R-1)和不同地球模型(Preliminary reference Earth model (PREM)、AK135、STW105和CRUST1.0)计算的负荷格林函数计算中国陆区的大气负荷垂向形变,结合GPS实测位移数据,评估基于不同地球模型计算得到的地表形变的差异.通过比较PREM与不同地球模型的建模结果发现,一维地球模型之间的建模差异较小,主要集中在气压变化较大的东部地区和西北地区,气压变化较小的青藏高原地区的建模差异则更小.相反,PREM与CRUST1.0模型在青藏高原地区的建模差异最大,在东部地区的建模差异最小.PREM与STW105、AK135和CRUST1.0在中国陆区的最大位移建模差异分别为0.05、0.34和0.44 mm.不同地球模型的建模差异是由负荷格林函数不同产生的,而负荷格林函数在近场受上地壳厚度的影响较大.对于局部地壳结构差异明显的青藏高原地区,一维地球模型AK135和STW105的建模结果对GPS残差的修正效果与PREM相当,而CRUST1.0地壳模型在修正PREM后可以使残差的WRMS最高降低0.93%.本文的研究表明,地壳结构的局部差异对负荷位移建模的影响不容忽视.

  • 加载中
  • 图 1 

    不同地球模型的模型参数

    Figure 1. 

    Model parameters of different earth models

    图 2 

    本文计算结果与GGFC提供的产品对比

    Figure 2. 

    Comparison between our results and GGFC′s products

    图 3 

    中国陆区大气负荷垂向位移周年振幅

    Figure 3. 

    Annual amplitude of PREM-derived ATML vertical displacement in China

    图 4 

    大气负荷垂向位移与GPS垂向残差的关系

    Figure 4. 

    The relationship between ATML displacement and GPS vertical residual

    图 5 

    部分典型测站的位移时间序列,其中红线表示GPS垂向残差,蓝线表示由PREM模型计算的大气负荷垂向形变

    Figure 5. 

    Time series of some stations with PREM-derived ATML displacement (blue curve) together with its GPS residuals (red curve) for the Up component

    图 6 

    不同模型计算的大气负荷位移在2011年的最大差值的绝对值

    Figure 6. 

    The absolute value of the maximum differences between the ATML displacement using different earth models over 2011

    图 7 

    WRMS相对改正量差值

    Figure 7. 

    Relative correction difference of WRMS

    图 8 

    垂向负荷格林函数

    Figure 8. 

    Load Green′s functions for vertical displacement

    图 9 

    垂向负荷格林函数差值及不同地壳层厚度的分布

    Figure 9. 

    The distribution of vertical load Green′s function difference and different crustal thickness

  •  

    Dill R, Klemann V, Martinec Z, et al. 2015. Applying local Green′s functions to study the influence of the crustal structure on hydrological loading displacements. Journal of Geodynamics, 88: 14-22, doi: 10.1016/j.jog.2015.04.005.

     

    Dziewonski A M, Anderson D L. 1981. Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25(4): 297-356, doi: 10.1016/0031-9201(81)90046-7.

     

    Farrell W E. 1972. Deformation of the earth by surface loads. Reviews of Geophysics, 10(3): 761-797, doi: 10.1029/RG010i003p00761.

     

    Feng R. 1985. Crustal thickness and densities in the upper mantle beneath China—The results of three dimensional gravity inversion. Acta Seismologica Sinica (in Chinese), 7(2): 143-157.

     

    Jia L L, Xiang L W, Wang H S. 2014. Effects of crustal structure for estimation of vertical load deformation on the solid Earth using GRACE in China mainland. Advances in Earth Science (in Chinese), 29(7): 828-834, doi: 10.11867/j.issn.1001-8166.2014.07.0828.

     

    Jiang W P, Li Z, Van Dam T, et al. 2013. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. Journal of Geodesy, 87(7): 687-703, doi: 10.1007/s00190-013-0642-3.

     

    Jiang W P, Zhou B Y, Li Z. 2016. Effects of atmospheric loading on IGS stations in different latitude zones. Science of Surveying and Mapping (in Chinese), 41(4): 28-32, doi: 10.16251/j.cnki.1009-2307.2016.04.007.

     

    Laske G, Masters G, Ma Z, et al. 2013. Update on CRUST1.0—A 1-degree Global Model of Earth′s Crust. Geophysical Research Abstracts, 15: Abstract EGU2013-2658.

     

    Li Z, Chen W, Van Dam T, et al. 2020. Comparative analysis of different atmospheric surface pressure models and their impacts on daily ITRF2014 GNSS residual time series. Journal of Geodesy, 94(4): 42, doi: 10.1007/s00190-020-01370-y.

     

    Mao W J. 1984. Static response of the earth under surface mass loads. Chinese Journal of Geophysics (in Chinese), 27(1): 74-83.

     

    Martens H R, Rivera L, Simons M. 2019. LoadDef: A Python-based toolkit to model elastic deformation caused by surface mass loading on spherically symmetric bodies. Earth and Space Science, 6(2): 311-323, doi: 10.1029/2018EA000462.

     

    Shen Y C, Yan H M, Peng P, et al. 2017. Comparative study of Green′s function and spherical harmonic function methods on surface deformation caused by mass loading. Geomatics and Information Science of Wuhan University (in Chinese), 42(7): 1008-1014, doi: 10.13203/j.whugis20150201.

     

    Spiridonov E A, Vinogradova O Y. 2019. Atmospheric loading displacements. Izvestiya, Atmospheric and Oceanic Physics, 55(11): 1814-1819, doi: 10.1134/S0001433819110227.

     

    Tregoning P, Watson C. 2009. Atmospheric effects and spurious signals in GPS analyses. Journal of Geophysical Research: Solid Earth, 114(B9): B09403, doi: 10.1029/2009JB006344.

     

    VanDam T, Ray R. 2010. Updated October 2010. S1 and S2 atmospheric tide loading effects for geodetic applications.

     

    Van Dam T M, Blewitt G, Heflin M B. 1994. Atmospheric pressure loading effects on Global Positioning System coordinate determinations. Journal of Geophysical Research: Solid Earth, 99(B12): 23939-23950, doi: 10.1029/94JB02122.

     

    Wang H S, Xiang L W, Jia L L, et al. 2012. Load Love numbers and Green′s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Computers & Geosciences, 49: 190-199, doi: 10.1016/j.cageo.2012.06.022.

     

    Wang M, Shen Z K, Dong D N. 2005. Effects of non-tectonic crustal deformation on continuous GPS position time series and correction to them. Chinese Journal of Geophysics (in Chinese), 48(5): 1045-1052. doi: 10.3321/j.issn:0001-5733.2005.05.010

     

    Yuan L G, Ding X L, Chen W, et al. 2008. Characteristics of daily position time series from the Hong Kong GPSfiducial network. Chinese Journal of Geophysics (in Chinese), 51(5): 1372-1384. doi: 10.3321/j.issn:0001-5733.2008.05.011

     

    Yue C Y, Dang Y M, Xu C H, et al. 2020. Effects and correction of atmospheric pressure loading deformation on GNSS reference stations in mainland China. Mathematical Problems in Engineering, 2020: 4013150, doi: 10.1155/2020/4013150.

     

    Zhang S Y, Zhong M, Tang S H. 2006. Vertical crustal displacements due to atmospheric loading effects at GPS fiducial stations in China. Geomatics and Information Science of Wuhan University (in Chinese), 31(12): 1090-1093, doi: 10.3969/j.issn.1671-8860.2006.12.014.

     

    Zhao T B, Fu C B, Ke Z J, et al. 2010. Global atmosphere reanalysis datasets: current status and recent advances. Advances in Earth Science (in Chinese), 25(3): 241-254, doi: 10.11867/j.issn.1001-8166.2010.03.0241.

     

    Zhou J C, Sun H P. 2007. Loading effect on high precision GPS observations. Advances in Earth Science (in Chinese), 153(10): 1036-1040, doi: 10.3321/j.issn:1001-8166.2007.10.007.

     

    冯锐. 1985. 中国地壳厚度及上地幔密度分布(三维重力反演结果). 地震学报, 7(2): 143-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198502001.htm

     

    贾路路, 相龙伟, 汪汉胜. 2014. 地壳结构对GRACE估算中国大陆地表垂直负荷形变的影响. 地球科学进展, 29(7): 828-834, doi: 10.11867/j.issn.1001-8166.2014.07.0828.

     

    姜卫平, 周伯烨, 李昭. 2016. 大气负载效应对不同纬度IGS测站的影响. 测绘科学, 41(4): 28-32, doi: 10.16251/j.cnki.1009-2307.2016.04.007.

     

    毛伟建. 1984. 地球表面质量负荷的静态响应. 地球物理学报, 27(1): 74-83. http://www.geophy.cn/article/id/cjg_5131

     

    沈迎春, 闫昊明, 彭鹏等. 2017. 质量负荷引起地表形变的格林函数和球谐函数方法对比研究. 武汉大学学报·信息科学版, 42(7): 1008-1014, doi: 10.13203/j.whugis20150201.

     

    王敏, 沈正康, 董大南. 2005. 非构造形变对GPS连续站位置时间序列的影响和修正. 地球物理学报, 48(5): 1045-1052. doi: 10.3321/j.issn:0001-5733.2005.05.010 http://www.geophy.cn/article/id/cjg_776

     

    袁林果, 丁晓利, 陈武等. 2008. 香港GPS基准站坐标序列特征分析. 地球物理学报, 51(5): 1372-1384. doi: 10.3321/j.issn:0001-5733.2008.05.011 http://www.geophy.cn/article/id/cjg_1329

     

    张诗玉, 钟敏, 唐诗华. 2006. 我国GPS基准站地壳垂直形变的大气负荷效应. 武汉大学学报·信息科学版, 31(12): 1090-1093, doi: 10.3969/j.issn.1671-8860.2006.12.014.

     

    赵天保, 符淙斌, 柯宗建等. 2010. 全球大气再分析资料的研究现状与进展. 地球科学进展, 25(3): 241-254, doi: 10.11867/j.issn.1001-8166.2010.03.0241.

     

    周江存, 孙和平. 2007. 高精度GPS观测中的负荷效应. 地球科学进展, 153(10): 1036-1040, doi: 10.3321/j.issn:1001-8166.2007.10.007.

  • 加载中

(9)

计量
  • 文章访问数:  2306
  • PDF下载数:  105
  • 施引文献:  0
出版历程
收稿日期:  2022-01-08
修回日期:  2022-03-24
上线日期:  2023-03-10

目录