1932—2018年期间基于Ap指数地磁活动的太阳周分布和季节分布

李琪, 朱梅, 张学锋, 乐贵明. 2022. 1932—2018年期间基于Ap指数地磁活动的太阳周分布和季节分布. 地球物理学报, 65(12): 4593-4601, doi: 10.6038/cjg2022P0948
引用本文: 李琪, 朱梅, 张学锋, 乐贵明. 2022. 1932—2018年期间基于Ap指数地磁活动的太阳周分布和季节分布. 地球物理学报, 65(12): 4593-4601, doi: 10.6038/cjg2022P0948
LI Qi, ZHU Mei, ZHANG XueFeng, LE GuiMing. 2022. Solar cycle and seasonal distribution of geomagnetic activities based on Ap indices from 1932 to 2018. Chinese Journal of Geophysics (in Chinese), 65(12): 4593-4601, doi: 10.6038/cjg2022P0948
Citation: LI Qi, ZHU Mei, ZHANG XueFeng, LE GuiMing. 2022. Solar cycle and seasonal distribution of geomagnetic activities based on Ap indices from 1932 to 2018. Chinese Journal of Geophysics (in Chinese), 65(12): 4593-4601, doi: 10.6038/cjg2022P0948

1932—2018年期间基于Ap指数地磁活动的太阳周分布和季节分布

  • 基金项目:

    国家自然科学基金面上项目(41774085)资助

详细信息
    作者简介:

    李琪, 研究员, 主要从事震磁关系和空间天气方面的研究.E-mail: darcyli@163.com

    通讯作者: 乐贵明, 研究员, 主要从事日地关系中的太阳高能粒子与磁暴研究.E-mail: Legm@cma.cn
  • 中图分类号: P353

Solar cycle and seasonal distribution of geomagnetic activities based on Ap indices from 1932 to 2018

More Information
    Corresponding author: LE GuiMing, E-mail: Legm@cma.cn
  • 我们统计分析了1932—2018年期间Ap指数表征的地磁活动的太阳周分布和季节分布.通过分析,我们发现一个太阳活动周每天Ap指数的总和与太阳活动周的幅度具有很好的相关性.太阳活动周最大的Ap值与太阳活动周的幅度相关性比较好.通过拟合,我们得到Ap指数的分布函数为fAp)=139.5e-0.2758Ap+66.2e-0.004377Ap.为了研究Ap≥25事件的太阳周分布和季节分布特征,我们把Ap指数分成了四个范围,即25≤Ap < 50,50≤Ap < 75,75≤Ap < 100,100≤Ap.太阳活动周的研究发现,对于25≤Ap < 50,50≤Ap < 75,75≤Ap < 100,100≤Ap的地磁活动,出现在太阳活动周上升段的比例分别为26.5%、28%、29.1%和31.5%,出现在太阳活动周下降段的比例分别为73.5%、72%、70.9%和69.5%.这表明地磁活动越弱的事件,出现在太阳活动周下降段的比例越高,反之就越低.对于25≤Ap < 50,50≤Ap < 75,75≤Ap < 100,100≤Ap的地磁活动出现在太阳活动峰年附近的比例分别为56.0%、64.9%、65.9%和82.7%.这表明Ap值越大的事件,出现在太阳活动周峰年附近的比例越高.需要指出的是Ap≥100的事件出现在太阳活动的峰年附近的比率明显高于Ap < 100的事件.季节分布的研究发现,四个范围内的Ap指数都具有明显的季节分布特征,即春分点和秋分点的地磁活动明显强于其他季节.研究还发现,25≤Ap < 50事件在春分点和秋分点的突出程度明显不如Ap≥50的事件.对于Ap≥150的地磁活动事件,3月份、7月份和9月份的数量明显多于其他月份的数量.

  • 加载中
  • 图 1 

    1932—2018年期间Ap指数范围为25≤Ap<50和50≤Ap<75表征的地磁活动的太阳周分布

    Figure 1. 

    The solar cycle distribution of geomagnetic activities described by Ap index in the scopes 25≤Ap < 50 and 50≤Ap < 75 from 1932 to 2018

    图 2 

    1932—2018年期间Ap指数的范围为75≤Ap<100和100≤Ap的太阳周分布

    Figure 2. 

    The solar cycle distribution of geomagnetic activities described by Ap index in the scope 75≤Ap < 100 and 100≤Ap from 1932 to 2018

    图 3 

    太阳活动周Ap指数的总和与太阳活动周幅度的关系

    Figure 3. 

    The correlation between the sum of Ap during a SC and the SC′s amplitude

    图 4 

    太阳活动周内最大Ap值与太阳活动周幅度的关系

    Figure 4. 

    The correlation between the largest Ap within a SC and the amplitude of the SC

    图 5 

    不同Ap值的统计分布

    Figure 5. 

    The statistical distribution of the Ap indices with different values

    图 6 

    四个不同Ap值范围的季节分布

    Figure 6. 

    Seasonal distribution of the Ap indices with four different scopes

    图 7 

    Ap≥150地磁活动的季节分布

    Figure 7. 

    The seasonal distribution of geomagnetic activity with Ap≥150

    表 1 

    不同范围Ap值在太阳活动周不同阶段的数量

    Table 1. 

    The numbers of Ap with different scopes during different stages of SCs 17~24

    SC 25≤Ap<50 50≤Ap<75 75≤Ap<100 100≤Ap
    Na Nd N23 Nt Na Nd N23 Nt Na Nd N23 Nt Na Nd N23 Nt
    17 60 332 203 392 12 48 38 60 0 17 9 17 1 21 15 22
    18 102 411 242 513 24 93 65 117 9 26 20 35 12 11 21 23
    19 158 298 328 456 35 61 78 96 10 22 30 32 15 25 39 40
    20 81 320 145 401 12 40 22 52 6 16 11 22 6 8 9 14
    21 122 348 255 470 24 60 51 84 11 16 18 27 5 15 11 20
    22 122 370 291 492 16 62 54 78 7 22 21 29 6 16 20 21
    23 155 210 232 365 30 32 44 62 7 7 7 14 6 13 17 19
    24 57 91 118 148 5 10 14 15 2 1 2 3 0 2 2 2
    下载: 导出CSV

    表 2 

    不同Ap值范围事件在太阳活动周不同阶段所占的比例

    Table 2. 

    The proportions of Ap with different scopes appearing at different stages of SCs 17~24

    Ap Nsa Nsd Ns23 Nst Nsa/Nst Nsd/Nst Ns23/Nst
    25≤Ap<50 857 2380 1814 3237 26.5% 73.5% 56.0%
    50≤Ap<75 158 406 366 564 28% 72% 64.9%
    75≤Ap<100 52 127 118 179 29.1% 70.9% 65.9%
    100≤Ap 51 111 134 162 31.5% 69.5% 82.7%
    下载: 导出CSV

    表 3 

    不同Ap值范围春分点、秋分点与夏至、冬至月份事件的数量

    Table 3. 

    The numbers of the events for Ap with different scopes in the equinoxes and solstices

    Ap Nse Nfe Nse+Nfe Nss Nws Nss+Nws (Nse+Nfe)/(Nss+Nws) (Nse+Nfe)/Nt
    25≤Ap<50 679 689 1368 396 415 811 1.69 42.4%
    50≤Ap<75 145 114 279 66 43 109 2.56 49.6%
    75≤Ap<100 47 46 93 26 8 34 2.74 51.4%
    100≤Ap 42 41 83 26 5 31 2.68 51.6%
    注: Nse为Ap事件在3月份和4月份数量的总数,Nfe是Ap事件在9月份和10月份数量的总数. Nss是Ap事件在6月份和7月份数量的总数,Nws是Ap事件在12月份和1月份数量的总数.
    下载: 导出CSV
  •  

    Azpilicueta F, Brunini C. 2012. A different interpretation of the annual and semiannual anomalies on the magnetic activity over the Earth. J. Geophys. Res., 117(A8): A08202, doi: 10.1029/2012JA017893.

     

    Bartels J. 1932. Terrestrial-magnetic activity and its relations to solar phenomena. Terr. Magn. Atmos. Electr., 37(1): 1-52. doi: 10.1029/TE037i001p00001

     

    Borovsky J E, Denton M H. 2006. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res., 111(A7): A07S08.

     

    Chapman S, Bartels J. 1940. Geomagnetism, Volume 1: Geomagnetic and Related Phenomena. London: Oxford University Press.

     

    Cliver E W, Crooker N U. 1993. A seasonal dependence for the geoeffectiveness of eruptive solar events. Solar. Phys., 145(2): 347-357. doi: 10.1007/BF00690661

     

    Cliver E W, Kamide Y, Ling A G. 2002. The semiannual variation of geomagnetic activity: Phases and profiles for 130 years of aa data. J. Atmos. Sol. Terr. Phys., 64(1): 47-53. doi: 10.1016/S1364-6826(01)00093-1

     

    Cortie A L. 1912. Sun-spots and terrestrial magnetic phenomena, 1898—1911: the cause of the annual variation in magnetic disturbances. Mon. Not. Roy. Astron. Soc., 73(1): 52-60, doi: 10.1093/mnras/73.1.52.

     

    Crooker N U, Cliver E W, Tsurutani B T. 1992. The semiannual variation of great geomagnetic storms and the postshock Russell-McPherron effect preceding coronal mass ejecta. Geophys. Res. Lett., 19(5): 429-432. doi: 10.1029/92GL00377

     

    Crooker N U, Cliver E W. 1993. Reply[to "Comment on "The semiannual variation of great geomagnetic storms and the postshock Russell-Mcpherron effect preceding coronal mass ejecta" By N. U. Crooker, E. W. Cliver and B. T. Tsurutani"]. Geophys. Res. Lett., 20(15): 1661-1662. doi: 10.1029/93GL01589

     

    De Gonzalez A L C, Gonzalez W D, Dutra S L G, et al. 1993. Periodic variation in the geomagnetic activity: a study based on the Ap index. J. Geophys. Res., 98(A6): 9215-9231. doi: 10.1029/92JA02200

     

    de Souza Franco A M, Hajra R, Echer E, et al. 2021. Seasonal features of geomagnetic activity: a study on the solar activity dependence. Ann. Geophys., 39(5): 929-943. doi: 10.5194/angeo-39-929-2021

     

    Jin Y Q, Miloch W J, Moen J I, et al. 2018. Solar cycle and seasonal variations of the GPS phase scintillation at high latitudes. J. Space Wea. Space Clim., 8: A48. doi: 10.1051/swsc/2018034

     

    Kanekal S G, Baker D N, McPherron R L. 2010. On the seasonal dependence of relativistic electron fluxes. Ann. Geophys., 28(5): 1101-1106. doi: 10.5194/angeo-28-1101-2010

     

    Le G, Yang X, Liu Y, et al. 2014. Statistical properties of X-class flares and their relationship with super active regions during solar cycles 21-23. Astrophysics and Space Science, 350(2), 443-447. doi: 10.1007/s10509-013-1773-y

     

    Le G M, Liu G A. 2020. The properties of source locations and solar cycle distribution of GLEs during 1942—2017. Solar Phys., 295(2): 35. doi: 10.1007/s11207-020-01600-8

     

    Le G M, Zhang Y N, Zhao M X. 2021a. Statistical and solar cycle distribution of daily Flux ≥109 cm-2d-1sr-1 for E>2 MeV electrons observed by GOES during 1987—2019. Solar Phys., 296(1): 16, doi: 10.1007/s11207-020-01758-1.

     

    Le G M, Zhao M X, Zhang W T, et al. 2021b. Source locations and solar-cycle distribution of the major geomagnetic storms (Dst≤-100 nT) from 1932 to 2018. Solar Phys., 296(12): 187, doi: 10.1007/s11207-021-01927-w.

     

    Le G M, Zhao M X, Li Q, et al. 2021c. Characteristics of source locations and solar cycle distribution of the strong solar proton events (≥1000 pfu) from 1976 to 2018. Mon. Not. Roy. Astron. Soc., 502(2): 2043-2048.

     

    Lockwood M, Owens M J, Barnard L A, et al. 2020a. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data. J. Space Wea. Space Clim., 10: 23, doi: 10.1051/swsc/2020023.

     

    Lockwood M, McWilliams K A, Owens M J, et al. 2020b. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport. J. Space Wea. Space Clim., 10: 30, doi: 10.1051/swsc/2020033.

     

    McIntosh D H. 1959. On the annual variation of magnetic disturbance. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 251(1001): 525-552.

     

    O'Brien T P, McPherron R L. 2002. Seasonal and diurnal variation of Dst dynamics. J. Geophys. Res., 107(A11): 1341, doi: 10.1029/2002JA009435.

     

    Oh S, Yi Y. 2018. Solar polar magnetic field dependency of geomagnetic activity semiannual variation indicated in the Aa index. Advances in Space Research, 61(1), 530-539. doi: 10.1016/j.asr.2017.09.008

     

    Oh S Y, Y Yi. 2011. Solar magnetic polarity dependency of geomagnetic storm seasonal occurrence. J. Geophys. Res., 116(A6): A06101.

     

    Richardson I G, Webb D F, Zhang J, et al. 2006. Major geomagnetic storms (Dst≤-100 nT) generated by corotating interaction regions. J. Geophys. Res., 111(A7): A07S09, doi: 10.1029/2005JA011476.

     

    Russell C T, McPherron R L. 1973. Semiannual variation of geomagnetic activity. J. Geophys. Res., 78(1): 92-108. doi: 10.1029/JA078i001p00092

     

    Sabine E. 1856. XV. On periodical laws discoverable in the mean effects of the larger magnetic disturbances. —No. Ⅲ. Philos. Trans. Roy. Soc. London, 146: 357-374. doi: 10.1098/rstl.1856.0016

     

    Svalgaard L. 1977. Geomagnetic activity: Dependence on solar wind parameters. //Zirker J B. Coronal Holes and High Speed Wind Streams. Boulder, CO: Colorado Associated University Press, 371-441.

     

    Tang T, Yang J, Shi Q Q, et al. 2020. The semiannual variation of transpolar arc incidence and its relationship to the Russell-McPherron effect. Earth Planet. Phys. , 4(6): 619-626, http://doi.org/10.26464/epp2020066. doi: 10.26464/epp2020066

     

    Yermolaev Y I, Nikolaeva N S, Lodkina I G, et al. 2012. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res., 117(A9): A00L07, doi: 10.1029/2011JA017139.

     

    Yue C, Zong Q G. 2011. Solar wind parameters and geomagnetic indices for four different interplanetary shock/ICME structures. J. Geophys. Res., 116(A12): A12201, doi: 10.1029/2011JA017013.

     

    Zhao H, Zong Q G. 2012. Seasonal and diurnal variation of geomagnetic activity: Russell-McPherron effect during different IMF polarity and/or extreme solar wind conditions. J. Geophys. Res., 117(A11): A11222, doi: 10.1029/2012JA017845.

  • 加载中

(7)

(3)

计量
  • 文章访问数:  2690
  • PDF下载数:  99
  • 施引文献:  0
出版历程
收稿日期:  2021-12-15
修回日期:  2022-03-16
上线日期:  2022-12-10

目录