吊舱式高温超导全张量磁梯度测量系统研发与应用研究

郭华, 王明, 岳良广, 常畅, 王铭超, 姚雨暘, 管琳琳, 郭建燕. 2022. 吊舱式高温超导全张量磁梯度测量系统研发与应用研究. 地球物理学报, 65(1): 360-370, doi: 10.6038/cjg2022P0370
引用本文: 郭华, 王明, 岳良广, 常畅, 王铭超, 姚雨暘, 管琳琳, 郭建燕. 2022. 吊舱式高温超导全张量磁梯度测量系统研发与应用研究. 地球物理学报, 65(1): 360-370, doi: 10.6038/cjg2022P0370
GUO Hua, WANG Ming, YUE LiangGuang, CHANG Chang, WANG MingChao, YAO YuYang, GUAN LinLin, GUO JianYan. 2022. Development and application of a full-tensor magnetic gradient measurement system for the cabin HTS. Chinese Journal of Geophysics (in Chinese), 65(1): 360-370, doi: 10.6038/cjg2022P0370
Citation: GUO Hua, WANG Ming, YUE LiangGuang, CHANG Chang, WANG MingChao, YAO YuYang, GUAN LinLin, GUO JianYan. 2022. Development and application of a full-tensor magnetic gradient measurement system for the cabin HTS. Chinese Journal of Geophysics (in Chinese), 65(1): 360-370, doi: 10.6038/cjg2022P0370

吊舱式高温超导全张量磁梯度测量系统研发与应用研究

  • 基金项目:

    国家自然科学基金(42074115)和国家重点研发计划(2017YFC0602000)资助

详细信息
    作者简介:

    郭华, 男, 1981年生, 博士, 教授级高工, 主要从事航磁方法技术研究及资料解释.E-mail: hyguohua@126.com

    通讯作者: 王明, 男, 高级工程师, 主要从事航空地球物理勘探工作.E-mail: 64037990@qq.com
  • 中图分类号: P631

Development and application of a full-tensor magnetic gradient measurement system for the cabin HTS

More Information
  • 本文介绍了我国最新研制的首套吊舱式高温超导全张量磁梯度测量系统,系统主要由高精度超导量子干涉磁强计构成的全张量磁梯度探头、数据采集系统、惯性导航系统、无磁吊舱等组成.在江苏省丹阳市试验区开展了飞行试验,成功地获取试验区全张量磁梯度分布图,测试结果表明吊舱式高温超导全张量磁梯度测量仪各项指标满足航磁测量技术规范的要求,测量精度优于±30 pT·m-1,具备了实际生产的能力,推动了我国航磁勘探的进步与发展,能够为航磁多参量数据采集-处理-解释系统提供宝贵的实测数据,填补我国航空高温超导全张量磁梯度测量技术研究的空白,缩短与发达国家在该技术上的差距,为"深地资源勘查开采"提供先进技术支撑,具有很好的应用前景.

  • 加载中
  • 图 1 

    高温超导全张量磁梯度探头结构示意图

    Figure 1. 

    Schematic diagram showing structure of high-temperature superconducting full-tensor magnetic gradient probe

    图 2 

    高温超导全张量磁梯度仪工程样机结构组成

    Figure 2. 

    Structure of high-temperature superconducting full-tensor magnetic gradient instrument

    图 3 

    选用的8个传感器噪声灵敏度测试结果

    Figure 3. 

    Noise sensitivity test results of eight selected sensors

    图 4 

    全张量磁梯度探头结构与支架示意图

    Figure 4. 

    Schematic diagram of full-tensor magnetic gradient probe structure and bracket

    图 5 

    惯导系统系统及接线方式示意图

    Figure 5. 

    Schematic diagram showing inertial navigation system and wiring way

    图 6 

    吊舱示意图

    Figure 6. 

    Photo showing pod

    图 7 

    非正交误差模型

    Figure 7. 

    Non-orthogonal error model

    图 8 

    惯导坐标系与姿态校正示意图

    Figure 8. 

    Schematic diagram of inertial navigation coordinate system and attitude correction

    图 9 

    磁补偿飞行航迹示意图

    Figure 9. 

    Schematic diagram of magnetically compensated flight path

    图 10 

    高温超导全张量测量系统静态测试结果图

    Figure 10. 

    Static test results of high-temperature superconducting full-tensor measuring system

    图 11 

    200 m飞行高度全张量磁梯度测量结果

    Figure 11. 

    Results of full tensor magnetic gradient measurement at 200 m flight altitude

    图 12 

    全张量5个独立分量的重复线测试结果对比图

    Figure 12. 

    Comparison of five independent components of the full-tensor of repeated flight surveys

    表 1 

    地面静态测量精度四阶差分结果

    Table 1. 

    Fourth\-order difference results of ground static measurement accuracy

    分量 Gxx/ (pT·m-1) Gxz/ (pT·m-1) Gyx/ (pT·m-1) Gyz/ (pT·m-1) Gzz/ (pT·m-1)
    结果 23.769 21.688 22.767 22.706 24.527
    下载: 导出CSV

    表 2 

    200 m高度动态飞行测量精度四阶差分结果

    Table 2. 

    Fourth-order difference results of flight measurement accuracy at 200 m altitude

    分量 Gxx/ (pT·m-1) Gxz/ (pT·m-1) Gyx/ (pT·m-1) Gyz/ (pT·m-1) Gzz/ (pT·m-1) 分量 Gxx/ (pT·m-1) Gxz/ (pT·m-1) Gyx/ (pT·m-1) Gyz/ (pT·m-1) Gzz/ (pT·m-1)
    测线1 27.898 28.205 27.622 27.851 26.352 测线21 27.832 28.148 27.314 27.739 25.924
    测线2 27.929 28.248 27.230 27.561 26.430 测线22 27.791 27.950 27.684 27.586 26.290
    测线3 27.886 28.166 27.688 27.930 25.832 测线23 28.120 28.386 27.388 27.247 26.653
    测线4 28.195 28.564 27.191 27.697 26.415 测线24 27.515 28.062 26.955 27.666 26.674
    测线5 27.459 28.428 27.569 27.583 26.162 测线25 27.568 27.844 27.000 27.083 26.070
    测线6 27.959 28.572 27.197 27.815 25.850 测线26 27.369 28.555 27.207 27.626 26.008
    测线7 27.486 28.733 27.609 27.879 26.290 测线27 28.190 28.043 27.549 27.661 26.365
    测线8 27.369 28.773 27.555 27.989 25.993 测线28 27.896 28.242 27.626 27.730 26.440
    测线9 27.857 27.992 27.177 27.001 25.923 测线29 27.729 28.488 27.590 27.891 26.217
    测线10 27.700 27.939 27.016 27.865 26.005 测线30 27.889 28.159 27.119 27.982 26.006
    测线11 27.709 28.496 27.590 27.613 25.947 测线31 27.795 28.536 27.334 27.769 26.748
    测线12 27.912 27.894 27.749 27.990 25.989 测线32 27.897 28.195 26.890 27.581 25.882
    测线13 28.020 28.325 27.128 27.528 25.843 测线33 27.794 28.483 26.912 27.928 25.906
    测线14 27.600 28.330 27.471 27.480 26.435 测线34 27.971 28.504 26.936 27.580 25.942
    测线15 27.912 28.661 27.239 27.801 26.082 测线35 27.772 28.242 27.479 27.017 25.966
    测线16 27.666 28.285 27.634 27.228 26.339 测线36 28.244 27.820 27.295 27.121 26.421
    测线17 28.092 28.193 27.569 27.498 26.495 测线37 27.469 28.131 26.990 27.863 26.374
    测线18 28.083 28.471 26.967 27.901 26.299 测线38 27.356 28.224 27.295 27.484 25.852
    测线19 27.506 28.541 27.662 27.575 26.336 测线39 27.360 28.070 26.948 27.845 26.731
    测线20 27.863 28.320 27.790 27.845 26.245 测线40 27.314 27.997 26.855 27.209 26.529
    下载: 导出CSV
  •  

    An Z F, Wang P, Duan S L, et al. 2016. The trial measurement of the Chinese-made tri-axial aeromagnetic gradient system. Geophysical and Geochemical Exploration (in Chinese), 40(2): 370-373.

     

    Bracken R E, Brown P J. 2005. Reducing tensor magnetic gradiometer data for unexploded ordnance detection. First Break, 23(8): 1-6.

     

    Bruce M, Justin L W. 2003. Beyond Single-sensor magnetic surveying. //8th International Kim-berlite Conference. Victoria, B C, Canada, 1-3.

     

    Chwala A, Stolz R, Zakosarenko V, et al. 2012. Full Tensor SQUID Gradiometer for airborne exploration. ASEG Extended Abstracts, 2012(1): 1-4.

     

    Du Y C. 2019. Research on geomagnetic tensor measurement technology based on fluxgate magnetometer[Ph. D. thesis] (in Chinese). Beijing: University of Chinese Academy of Sciences.

     

    Gamey T J. 2008. Development and evaluation of an airborne superconducting quantum interference device-based magnetic gradiometer tensor system for detection, characterization and mapping of unexploded ordnance. Battelle Memorial Inst Oak Ridge TN.

     

    Gao Q M. 2020. Research on system error calibration and interference compensation technology of aeromagnetic three-component survey based on fixed-wing UAV[Ph. D. thesis] (in Chinese). Changchun: Jilin University.

     

    Koch R H, Keefe G A, Allen G. 1996. Room temperature three sensor magnetic field gradiometer. Review of Scientific Instruments, 67(1): 230-235. doi: 10.1063/1.1146576

     

    Ministry of Land and Resources of the People's Republic of China. 2010. DZ/T 0142-2010 Criterion of aeromagnetic survey (in Chinese). Beijing: Standards Press of China.

     

    Nabighian M N, Grauch V J S, Hansen R O, et al. 2005. The historical development of the magnetic method in exploration. Geophysics, 70(6): 33ND-61ND. doi: 10.1190/1.2133784

     

    Pan Q, Liu D J, Cheng X, et al. 2018. New development of magnetic gradient measurement technique. Progress in Geophysics (in Chinese), 33(6): 2568-2574, doi: 10.6038/pg2018BB0330.

     

    Ren S N. 2010. The development of high-temperature superconducting magnetometer control device[Ph. D. thesis] (in Chinese). Changchun: Jilin University.

     

    Schmidt P, Clark D, Leslie K, et al. 2004. GETMAG-a SQUID magnetic tensor gradiometer for mineral and oil exploration. Exploration Geophysics, 35(4): 297-305. doi: 10.1071/EG04297

     

    Shen M D, Cheng D F, An Z F, et al. 2016. Optimization of slanting surfaces of five-sided pyramidal full tensor magnetic gradient probe. Journal of Jilin University (Engineering and Technology Edition) (in Chinese), 46(5): 1732-1738.

     

    Stolz R, Zakosarenko V, Schulz M, et al. 2006. Magnetic full-tensor SQUID gradiometer system for geophysical applications. The Leading Edge, 25(2): 178-180. doi: 10.1190/1.2172308

     

    Sui Y Y, Li G, Wang S L, et al. 2014. Compact fluxgate magnetic full-tensor gradiometer with spherical feedback coil. Review of Scientific Instruments, 85(1): 014701, doi: 10.1063/1.4856675.

     

    Tang Y, Yang H Y. 2012. Application of electronic magnetometer in geological exploration. Science and Technology Innovation and Application (in Chinese), (9): 30.

     

    Wang L F, Xue D J, Xiong S Q, et al. 2013. The method of quality assessment for digital magnetic compensation and software realization. Geophysical & Geochemical Exploration (in Chinese), 37(6): 1027-1030.

     

    Wang Y. 2015. Research on aeromagnetic three-component detection system[Ph. D. thesis] (in Chinese). Changchun: Jilin University.

     

    Zhang C D. 2006. Airborne tensor magnetic gradiometry-the latest progress of airborne magnetometric technology. Chinese Journal of Engineering Geophysics (in Chinese), 3(5): 354-361.

     

    Zheng Q, Guo H, Zhang G B, et al. 2019. Research and application of edge detection based on full tensor magnetic gradient direction Theta method. Progress in Geophysics (in Chinese), 34(4): 1568-1576, doi: 10.6038/pg2019CC0328.

     

    Zheng T. 2015. Research on application of airborne magnetometry using full-tensor squid gradiometer. Cryogenics and Superconductivity (in Chinese), 43(10): 41-44.

     

    安战锋, 王平, 段树岭等. 2016. 国产航磁全轴梯度勘查系统试验测量. 物探与化探, 40(2): 370-373. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201602022.htm

     

    杜昱辰. 2019. 基于磁通门的地磁张量测量技术研究[博士论文]. 北京: 中国科学院大学.

     

    高全明. 2020. 固定翼无人机航磁三分量系统误差校正与干扰补偿技术研究[博士论文]. 长春: 吉林大学.

     

    潘琦, 刘得军, 程星等. 2018. 磁力梯度测量技术的新发展. 地球物理学进展, 33(6): 2568-2574, doi: 10.6038/pg2018BB0330.

     

    任胜男. 2010. 高温超导磁力仪测控装置研制[博士论文]. 长春: 吉林大学.

     

    申茂冬, 程德福, 安战峰等. 2016. 五棱台式全张量磁梯度探头侧面倾角优化方法. 吉林大学学报(工学版), 46(5): 1732-1738. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201605051.htm

     

    唐雨, 杨会永. 2012. 浅谈电子磁力仪在地质勘查中的应用. 科技创新与应用, (9): 30. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201209031.htm

     

    王林飞, 薛典军, 熊盛青等. 2013. 航磁软补偿质量评价方法及软件实现. 物探与化探, 37(6): 1027-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201306013.htm

     

    王一. 2015. 航磁三分量探测系统研究[博士论文]. 长春: 吉林大学.

     

    张昌达. 2006. 航空磁力梯度张量测量-航空磁测技术的最新进展. 工程地球物理学报, 3(5): 354-361. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200605007.htm

     

    郑强, 郭华, 张贵宾等. 2019. 基于全张量磁梯度方向Theta法进行边界识别的研究与应用. 地球物理学进展, 34(4): 1568-1576, doi: 10.6038/pg2019CC0328.

     

    郑婷. 2015. 全张量SQUID磁梯度计在航空磁测方面的应用研究. 低温与超导, 43(10): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201510009.htm

     

    中华人民共和国国土资源部. 2010. DZ/T 0142-2010航空磁测技术规范. 北京: 中国标准出版社.

  • 加载中

(12)

(2)

计量
  • 文章访问数:  3178
  • PDF下载数:  151
  • 施引文献:  0
出版历程
收稿日期:  2021-05-31
修回日期:  2021-11-09
上线日期:  2022-01-10

目录