甲烷气爆震源性能研究及其在粤港澳大湾区化龙断层探测中的应用

徐善辉, 王伟涛, 许卫卫, 王力伟, 马晓娜, 王翔, 孟川民, 杨微. 2021. 甲烷气爆震源性能研究及其在粤港澳大湾区化龙断层探测中的应用. 地球物理学报, 64(12): 4269-4279, doi: 10.6038/cjg2021P0281
引用本文: 徐善辉, 王伟涛, 许卫卫, 王力伟, 马晓娜, 王翔, 孟川民, 杨微. 2021. 甲烷气爆震源性能研究及其在粤港澳大湾区化龙断层探测中的应用. 地球物理学报, 64(12): 4269-4279, doi: 10.6038/cjg2021P0281
XU ShanHui, WANG WeiTao, XU WeiWei, WANG LiWei, MA XiaoNa, WANG Xiang, MENG ChuanMin, YANG Wei. 2021. Performance study of methane gas explosion source and its application in exploring of Hualong fault in Guangdong-Hong Kong-Macao Greater Bay Area. Chinese Journal of Geophysics (in Chinese), 64(12): 4269-4279, doi: 10.6038/cjg2021P0281
Citation: XU ShanHui, WANG WeiTao, XU WeiWei, WANG LiWei, MA XiaoNa, WANG Xiang, MENG ChuanMin, YANG Wei. 2021. Performance study of methane gas explosion source and its application in exploring of Hualong fault in Guangdong-Hong Kong-Macao Greater Bay Area. Chinese Journal of Geophysics (in Chinese), 64(12): 4269-4279, doi: 10.6038/cjg2021P0281

甲烷气爆震源性能研究及其在粤港澳大湾区化龙断层探测中的应用

  • 基金项目:

    国家重点研发计划(2018YFC1503200), 国家自然科学基金(41790463), 中国地震局地球物理研究所基本科研业务费(DQJB19B25), 中国工程物理研究院高压物理与地震科技联合实验室开发基金(2019HPPES05)联合资助

详细信息
    作者简介:

    徐善辉, 男, 1983年生, 副研究员, 主要从事地球物理勘探方法和技术装备研究.E-mail: xushanhui@126.com

    通讯作者: 王伟涛, 男, 1979年生, 研究员, 主要从事地震学和地球物理学研究
  • 中图分类号: P631

Performance study of methane gas explosion source and its application in exploring of Hualong fault in Guangdong-Hong Kong-Macao Greater Bay Area

More Information
    Corresponding author: WANG WeiTao
  • 针对近年兴起的甲烷气爆主动震源,设计了不同尺寸震源装置,分别在不同激发环境下,通过比较激发信号能量及频带分布进行了震源性能研究,实现了震源参数优化.同点甲烷气爆和炸药震源成像结果研究表明,甲烷气爆震源引起的地表振动速度更小,更符合安全环保的需求.将优化后的甲烷气爆震源用于粤港澳大湾区的化龙断裂浅部结构勘查,单炮记录结果可见高信噪比初至信号.对10炮激发记录进行初至走时拾取后进行走时层析成像发现,化龙断裂推测位置附近纵波速度在第四系下方200~400 m深度范围明显错断.基于横波/纵波波谱比分析结果(HVSR),根据经验关系推断了该地区沉积层厚度分布,发现与走时层析成像结果中的第四系沉积底界面位置吻合良好.以上成像结果与该地区已有钻孔及早期反射地震结果高度吻合,证明了此次采用的甲烷气爆主动震源作为炸药震源的替代品,在未来城市地下结构浅勘工作中有广泛的应用前景.

  • 加载中
  • 图 1 

    不同参数震源激发效果比较

    Figure 1. 

    Comparison of the activate performances for different parameter combinations in the methane gas explosion source

    图 2 

    同点激发的炸药震源和气爆震源激发地震记录比较

    Figure 2. 

    Comparison of the seismograms for gas explosion and traditional explosion source which excited at the same point

    图 3 

    测线激发炮点和接收点位置分布

    Figure 3. 

    The location distribution of shots (methane gas explosion) and receiver points in this experiment

    图 4 

    (a) 观测系统示意图(红色星号为炮点,蓝色三角形为检波点);(b) 从10炮气爆震源激发记录中拾取的初至波走时散点图

    Figure 4. 

    (a) The schematic diagram of acquisition system, and red asterisk represents the shot, blue triangle denotes the receiver; (b) The travel-time scattering diagram of first arrivals picked from seismic records excited by 10 gas explosion source

    图 5 

    气爆震源激发的炮集记录(震源位于10.2 km处,10~11 km部分可见明显的直达波信号)

    Figure 5. 

    The seismograms of methane gas explosion source, the source is located at 10.2 km, and the direct wave signal can be recorded obviously at a distance from 10 km to 11 km

    图 6 

    层析反演过程中炮集记录的走时拟合情况

    Figure 6. 

    The travel time fitting of seismogram in the process of tomography inversion

    图 7 

    反演所得的二维P波速度剖面(a)及地质解释结果(b).

    Figure 7. 

    The two-dimensional P wave velocity profile (a) and geological interpretation results (b)

    图 8 

    HVSR分析结果及其与地震层析结果对比

    Figure 8. 

    HVSR analysis results and their comparisons with tomography results

    表 1 

    不同型号震源激发情况表

    Table 1. 

    Excitation of different types of seismic sources

    能量排序 激发序号 装置型号 激发深度/m 注气压力/MPa 最大偏移距平均振幅/count
    1 shot01 科133-700 5 9 19.37
    2 shot02 科108-1000 5 9 17.23
    3 shot08 焊WB-70-2000 5 9 16.86
    4 shot03 标WB-120-1000 5 9 16.18
    5 shot04 焊WB-120-1000 5 9 16.03
    6 shot12 科108-1000 2 6 13.88
    7 shot05 科133-700 2 6 13.56
    8 shot11 焊WB-120-1000 2 6 12.83
    9 shot10 焊WB-70-2000 3 6 10.24
    10 shot09 焊WB-70-1000 5 9 9.32
    11 shot06 格89-430 5 9 8.02
    12 shot07 格89-350 1 6 7.37
    下载: 导出CSV

    表 2 

    不同震源测试点爆破振动速度峰值

    Table 2. 

    Peak value of blasting vibration velocity at different test points

    测点 距离激发点距离(m) 炸药震源振动速度峰值(cm·s-1) 气爆震源振动速度峰值(cm·s-1)
    东西向 南北向 垂直向 东西向 南北向 垂直向
    1# 5 -46.04 -36.36 -47.07 -4.42 5.90 26.33
    2# 20 -4.30 3.32 -9.57 0.67 -1.43 -1.85
    3# 50 0.42 -0.39 0.73 -0.25 -0.32 -0.46
    4# 100 -0.38 -0.45 -0.29 -0.09 -0.07 -0.24
    5# 200 0.07 0.07 0.17 -0.03 0.04 0.03
    下载: 导出CSV

    表 3 

    一维平均层状变化速度初始模型表

    Table 3. 

    Initial model of one dimensional average laminar velocity

    H(m) 0.00 18.00 77.00 253.00 464.00 683.00 798.00
    VP
    (m·s-1)
    1509 3500 4497 5238 5311 5512 5592
    下载: 导出CSV

    表 4 

    反演主要参数表

    Table 4. 

    The main inversion parameters

    网格大小 平滑参数 迭代次数 加权因子
    (m)
    平滑尺度 最大变化量
    (%)
    最小速度
    (km·s-1)
    最大速度
    (km·s-1)
    X(m) Z(m) X(m) Z(m)
    6.50 3.25 150.00 30.00 5 80.00 0.95 60.00 0.833 6.00
    下载: 导出CSV
  •  

    Bao F, Li Z W, Yuen D A, et al. 2018. Shallow structure of the Tangshan fault zone unveiled by dense seismic array and horizontal-to-vertical spectral ratio method. Physics of the Earth and Planetary Interiors, 281: 46-54. doi: 10.1016/j.pepi.2018.05.004

     

    Chang X, Li L X, Liu Y K, et al. 2008. Seismic profile of Huangzhuang-Gaoliying fault in Beijing by Mini-sosie method. Chinese Journal of Geophysics (in Chinese), 51(5): 1503-1510. http://search.cnki.net/down/default.aspx?filename=DQWX200805025&dbcode=CJFD&year=2008&dflag=pdfdown

     

    Chen G H, Wan H Z, Shu L S, et al. 2012. An analysis on ore-controlling conditions and geological features of the Cu-W polymetallic ore deposit in the Zhuxi area of Jingdezhen, Jiangxi Province. Acta Petrologica Sinica (in Chinese), 28(12): 3901-3914. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201212009.htm

     

    Chen M, Wang B S Wang W T, et al. 2013. A study on S wave and Poisson's ratio models in southern Yanshan uplift using seismic data generated by airguns in a water reservoir. Progress in Geophysics (in Chinese), 28(1): 102-110, doi: 10.6038/pg20130111.

     

    Chen Q F, Liu L B, Wang W J, et al. 2009. Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing. Chinese Science Bulletin, 54(2): 280-287. doi: 10.1007/s11434-008-0422-2

     

    Chen Y, Zhu R X. 2005. Proposed project of "underground bright lump". Advances in Earth Science, 20(5): 485-489. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200505001.htm

     

    Chen Y, Liu L B, Ge H K, et al. 2008. Using an airgun array in a land reservoir as the seismic source for seismotectonic studies in northern China: experiments and preliminary results. Geophysical Prospecting, 56(4): 601-612. doi: 10.1111/j.1365-2478.2007.00679.x

     

    Chen Y, Wang B S, Yao H J. 2017. Seismic airgun exploration of continental crust structures. Science China Earth Sciences, 60(10): 1739-1751. doi: 10.1007/s11430-016-9096-6

     

    Deng Q D, Xu X W, Zhang X K, et al, 2003. Methods and techniques for surveying and prospecting active faults in urban areas. Earth Science Frontiers (in Chinese), 10(1): 93-104. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200301019.htm

     

    Dong S, Meng C M, Xiao Y L, et al. 2017. Preliminary study of two-stage light gas gun using reactive gas as driving energy. Chinese Journal of High Pressure Physics (in Chinese), 31(2): 182-186. http://www.researchgate.net/publication/317780195_Preliminary_Study_of_Two-Stage_Light_Gas_Gun_Using_Reactive_Gas_as_Driving_Energy

     

    Dong S W, Li T D, Lü Q T, et al. 2013. Progress in deep lithospheric exploration of the continental china: a review of the SinoProbe. Tectonophysics, 606: 1-13. doi: 10.1016/j.tecto.2013.05.038

     

    Feng S Y, Liu B J, Zhao C B, et al, 2015. The application experiment of three-dimensional seismic reflection method in the detection of active faults: a case from Luhuatai fault. Seismology and Geology (in Chinese), 37(2): 627-635. http://www.researchgate.net/publication/282957035_The_application_experiment_of_three-dimensional_seismic_reflection_method_in_the_detection_of_active_faults_A_case_from_luhuatai_fault

     

    Li S L, Mooney W D, Fan J C. 2006. Crustal structure of mainland China from deep seismic sounding data. Tectonophysics, 420(1-2): 239-252. doi: 10.1016/j.tecto.2006.01.026

     

    Li W, Chen Y, Wang F Y, et al. 2020. Feasibility study of developing one new type of seismic source via carbon dioxide phase transition. Chinese Journal of Geophysics (in Chinese), 63(7): 2605-2616, doi: 10.6038/cjg2020N0335.

     

    Liang G, Wu Y B. 2013. Active Fault Detection and Seismic Risk Assessment in Guangzhou (in Chinese). Beijing: Science Press.

     

    Mooney W D, Prodehl C, Pavlenkova N I. 2002. Seismic velocity structure of the continental lithosphere from controlled source data. International Geophysics, 81: 887-910. http://escweb.wr.usgs.gov/share/mooney/54seismicvelocitystruct.pdf

     

    Tian B Q, Du Y N, You Z W, et al. 2019. Measuring the sediment thickness in urban areas using revised H/V spectral ratio method. Engineering Geology, 260: 105223, doi: 10.1016/j.enggeo.2019.105223.

     

    Wang B S, Ge H K, Wang B, et al. 2016. Practices and advances in exploring the subsurface structure and its temporal evolution with repeatable artificial sources. Earthquake Research in China, 32(3): 284-297. http://www.cnki.com.cn/Article/CJFDTotal-ZDZW201603002.htm

     

    Wang H T, Zhuang C T, Xue B, et al. 2009. Precisely and actively seismic monitoring. Chinese Journal of Geophysics (in Chinese), 52(7): 1808-1815, doi: 10.3969/j.issn.0001-5733.2009.07.015.

     

    Wang W J, Liu L B, Chen Q F, et al. 2009. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure. Chinese Journal of Geophysics (in Chinese), 52(6): 1515-1525, doi: 10.3969/j.issn.0001-5733.2009.06.013.

     

    Wang W T, Wang X, Meng C M, et al. 2019. Characteristics of the seismic waves from a new active source based on methane gaseous detonation. Earthquake Research in China, 33(2): 354-366. http://www.cnki.com.cn/Article/CJFDTotal-ZDZW201902015.htm

     

    Yamaoka K, Kunitomo T, Miyakawa K, et al. 2001. A trial for monitoring temporal variation of seismic velocity using an across system. The Island Arc, 10(3-4): 336-347. doi: 10.1046/j.1440-1738.2001.00332.x

     

    Zhang B, Bai C H. 2014. Research progress on the dynamic characteristics of gaseous detonation. Science China-Physica, Mechanica & Astronomica (in Chinese), 44(7): 665-681. http://adsabs.harvard.edu/abs/2014SSPMA..44..665Z

     

    Zhang Z J, Deng Y F, Teng J W, et al. 2011. An overview of thecrustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 40(4): 977-989. doi: 10.1016/j.jseaes.2010.03.010

     

    Zong J Y, Sun X L, Zhang P. 2020. Site effect and earthquake disaster characteristics in Guangzhou area from horizontal-to-vertical spectral ratio (HVSR) method. Seismology and Geology (in Chinese), 42(3): 628-639.

     

    常旭, 李林新, 刘伊克等. 2008. 北京断陷黄庄-高丽营断层伪随机可控震源地震剖面. 地球物理学报, 51(5): 1503-1510. doi: 10.3321/j.issn:0001-5733.2008.05.024 http://www.geophy.cn//CN/abstract/abstract1344.shtml

     

    陈棋福, 刘澜波, 王伟君等. 2008. 利用地脉动探测北京城区的地震动场地响应. 科学通报, 53(18): 2229-2235. doi: 10.3321/j.issn:0023-074X.2008.18.013

     

    陈颙, 朱日祥. 2005. 设立"地下明灯研究计划"的建议. 地球科学进展, 20(5): 485-489. doi: 10.3321/j.issn:1001-8166.2005.05.001

     

    邓起东, 徐锡伟, 张先康等. 2003. 城市活动断裂探测的方法和技术. 地学前缘, 10(1): 93-104. doi: 10.3321/j.issn:1005-2321.2003.01.012

     

    董石, 孟川民, 肖元陆等. 2017. 反应气体驱动二级轻气炮技术的初步研究. 高压物理学报, 31(2): 182-186. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201702011.htm

     

    酆少英, 刘保金, 赵成彬等. 2015. 三维反射地震方法在活断层探测中的应用试验——以芦花台断层为例. 地震地质, 37(2): 627-635. doi: 10.3969/j.issn.0253-4967.2015.02.023

     

    李稳, 陈颙, 王夫运等. 2020. 二氧化碳相变技术应用于新型震源研发的可行性研究. 地球物理学报, 63(7): 2605-2616, doi: 10.6038/cjg2020N0335. http://www.geophy.cn//CN/abstract/abstract15511.shtml

     

    梁干, 吴业彪. 2013. 广州市活动断层探测与地震危险性评价. 北京: 科学出版社.

     

    王洪体, 庄灿涛, 薛兵等. 2009. 精密主动地震监测. 地球物理学报, 52(7): 1808-1815, doi: 10.3969/j.issn.0001-5733.2009.07.015. http://www.geophy.cn//CN/abstract/abstract1095.shtml

     

    王伟君, 刘澜波, 陈棋福等. 2009. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构. 地球物理学报, 52(6): 1515-1525, doi: 10.3969/j.issn.0001-5733.2009.06.013. http://www.geophy.cn//CN/abstract/abstract1062.shtml

     

    张博, 白春华. 2014. 气相爆轰动力学特征研究进展. 中国科学: 物理学力学天文学, 44(7): 665-681. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201407002.htm

     

    宗健业, 孙新蕾, 张鹏. 2020. 利用HVSR方法研究广州地区的场地效应及估算地震灾害特征. 地震地质, 42(3): 628-639. doi: 10.3969/j.issn.0253-4967.2020.03.006

  • 加载中

(8)

(4)

计量
  • 文章访问数:  2251
  • PDF下载数:  363
  • 施引文献:  0
出版历程
收稿日期:  2021-04-29
修回日期:  2021-07-29
上线日期:  2021-12-10

目录