BFO-PSO算法下的弹性波数值模拟

赵平起, 何书梅, 倪天禄, 赵明, 张家良, 吴吉忠, 魏朋朋, 李闻达, 白文磊. 2021. BFO-PSO算法下的弹性波数值模拟. 地球物理学报, 64(7): 2461-2470, doi: 10.6038/cjg2021O0471
引用本文: 赵平起, 何书梅, 倪天禄, 赵明, 张家良, 吴吉忠, 魏朋朋, 李闻达, 白文磊. 2021. BFO-PSO算法下的弹性波数值模拟. 地球物理学报, 64(7): 2461-2470, doi: 10.6038/cjg2021O0471
ZHAO PingQi, HE ShuMei, NI TianLu, ZHAO Ming, ZHANG JiaLiang, WU JiZhong, WEI PengPeng, LI WenDa, BAI WenLei. 2021. Numerical modelling of elastic waves based on the BFO-PSO algorithm. Chinese Journal of Geophysics (in Chinese), 64(7): 2461-2470, doi: 10.6038/cjg2021O0471
Citation: ZHAO PingQi, HE ShuMei, NI TianLu, ZHAO Ming, ZHANG JiaLiang, WU JiZhong, WEI PengPeng, LI WenDa, BAI WenLei. 2021. Numerical modelling of elastic waves based on the BFO-PSO algorithm. Chinese Journal of Geophysics (in Chinese), 64(7): 2461-2470, doi: 10.6038/cjg2021O0471

BFO-PSO算法下的弹性波数值模拟

  • 基金项目:

    港东二区油藏渗流地球物理技术提高采收率研究"标段1:地震波场与油藏流场耦合关系研究"(FRSG), 国家自然科学基金重点项目(41630319), 国家科技部重大科学仪器设备开发专项重点研发项目(2018YFF01013500-03)和国家科技重大专项课题(2016ZX05024-001-001)联合资助

详细信息
    作者简介:

    赵平起, 1964年生, 教授级高级工程师, 1985年获华东石油学院采油工程专业学士学位, 2001年获成都理工大学油气田开发工程硕士学位, 2004年获中国科学院地质学博士学位, 现任中国石油大港油田公司副总经理, 主要从事油气田开发管理及研究.E-mail: zhaopq1203@163.com

    通讯作者: 白文磊, 1995年生, 硕士, 主要从事高铁地震学、复杂介质波场数值模拟与成像、智能算法及应用研究.E-mail: wl_bai@163.com
  • 中图分类号: P631

Numerical modelling of elastic waves based on the BFO-PSO algorithm

More Information
  • 地震波正演模拟是地震反演与成像的基础和关键,有限差分算法广泛应用于地震波数值模拟,差分算子的精度直接影响数值模拟的质量和效率.本文提出一种BFO-PSO算法下的有限差分算子优化方法,并应用其进行弹性波数值模拟.首先,将BFO算法中的趋化、复制、驱散三个步骤引入PSO算法,形成具有更好全局搜索能力和更快收敛速度的BFO-PSO混合优化算法;之后构造包含有限差分系数的目标函数,并应用BFO-PSO混合优化算法求取最优解,获得优化的有限差分算子;最后应用此优化的有限差分算子在不同模型上进行弹性波数值模拟.根据频散曲线及数值模拟结果,可以分析得出,BFO-PSO算法优化后的有限差分算子在保证计算效率的同时,具有更高的精度,可以有效压制数值频散,提高数值模拟的精度和效率.

  • 加载中
  • 图 1 

    BFO-PSO算法流程图

    Figure 1. 

    Flowchart of the BFO-PSO algorithm

    图 2 

    不同阶数的BFO-PSO算法下的优化有限差分算子的频散曲线

    Figure 2. 

    Dispersion curves of the optimized FD operator based on the BFO-PSO algorithm for different values of N (different orders)

    图 3 

    不同阶数的PSO算法下的优化有限差分算子的频散曲线

    Figure 3. 

    Dispersion curves of the optimized FD operator based on the PSO algorithm for different values of N (different orders)

    图 4 

    BFO-PSO算法与PSO算法优化的有限差分算子的频散曲线对比

    Figure 4. 

    Comparison of numerical dispersion curves between optimized FD operator based on the BFO-PSO algorithm and the PSO algorithm

    图 5 

    BFO-PSO算法与Remez交换算法(He et al., 2019)优化的有限差分算子的频散曲线对比

    Figure 5. 

    Comparison of numerical dispersion curves between the optimized FD operator based on the BFO-PSO algorithm and the Remez algorithm (He et al., 2019)

    图 6 

    双层介质模型

    Figure 6. 

    Double-layer velocity model

    图 7 

    应用不同有限差分算子得到的合成波场快照(X分量)

    Figure 7. 

    Synthetic wavefield snapshots (X component) using different FD operators

    图 8 

    应用不同有限差分算子得到的合成波场快照(Z分量)

    Figure 8. 

    Synthetic wavefield snapshots (Z component) using different FD operators

    图 9 

    Marmousi模型

    Figure 9. 

    Marmousi model

    图 10 

    在Marmousi模型应用不同有限差分算子进行弹性波数值模拟得到的合成地震记录(Z分量)

    Figure 10. 

    Synthetic shot records (Z component) obtained by numerical modelling of elastic waves using different FD operators on Marmousi model

    表 1 

    BFO-PSO算法下的优化有限差分算子系数

    Table 1. 

    Optimized FD coefficients based on the BFO-PSO algorithm

    8阶 12阶 16阶 20阶 24阶
    c1 0.84893502 0.91765515 0.94688314 0.96461796 0.97479403
    c2 -0.25420642 -0.35256003 -0.40107190 -0.43249168 -0.45124395
    c3 0.06597073 0.14837966 0.20125787 0.23962888 0.26412709
    c4 -0.00974140 -0.05542580 -0.09962559 -0.13768333 -0.16450320
    c5 0.01596538 0.04507117 0.07710039 0.10293941
    c6 -0.00271980 -0.01745341 -0.04052505 -0.06281853
    c7 0.00524544 0.01930171 0.03658504
    c8 -0.00096164 -0.00794853 -0.01990991
    c9 0.00260061 0.00986155
    c10 -0.00054026 -0.00426879
    c11 0.00149372
    c12 -0.00034129
    下载: 导出CSV
  •  

    Beheshti Z, Shamsuddin S M H. 2013. A review of population-based meta-heuristic algorithm. International Journal of Advances in Soft Computing and its Applications, 5(1): 1-35. http://www.researchgate.net/publication/270750820_A_review_of_population-based_meta-heuristic_algorithm

     

    Chu C L, Stoffa P L. 2012. Determination of finite-difference weights using scaled binomial windows. Geophysics, 77(3): W17-W26. doi: 10.1190/geo2011-0336.1

     

    Daryabeigi E, Dehkordi B M. 2014. Smart bacterial foraging algorithm based controller for speed control of switched reluctance motor drives. International Journal of Electrical Power & Energy Systems, 62: 364-373. http://www.sciencedirect.com/science/article/pii/S0142061514002506

     

    Di Bartolo L, Dors C, Mansur W J. 2012. A new family of finite-difference schemes to solve the heterogeneous acoustic wave equation. Geophysics, 77(5): T187-T199. doi: 10.1190/geo2011-0345.1

     

    Du Z Y, Wu G C, Li Y S. 2019. Three-dimensional elastic wave forward modeling in orthorhombic media based on least squares. Progress in Geophysics (in Chinese), 34(1): 69-79, doi: 10.6038/pg2019BB0566.

     

    Hazra J, Sinha A K. 2011. A multi-objective optimal power flow using particle swarm optimization. European Transactions on Electrical Power, 21(1): 1028-1045. doi: 10.1002/etep.494

     

    He Z, Zhang J H, Yao Z X. 2019. Determining the optimal coefficients of the explicit finite-difference scheme using the Remez exchange algorithm. Geophysics, 84(3): S137-S147. doi: 10.1190/geo2018-0446.1

     

    Hussain K, Salleh M N M, Cheng S, et al. 2018. Metaheuristic research: a comprehensive survey. Artificial Intelligence Review, 52(4): 2191-2233. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiAxZDRkZWQyMDc3ZDExNDg3ZGFmOWRlMzIwNGE2Nzc5ZBoIamc3ZWkxYzY%3D

     

    Jadoun V K, Gupta N, Niazi K R, et al. 2015. Modulated particle swarm optimization for economic emission dispatch. International Journal of Electrical Power & Energy Systems, 73: 80-88.

     

    Kennedy J, Eberhart R. 1995. Particle swarm optimization.//Proceedings of ICNN′95-International Conference on Neural Networks. Perth, WA, Australia: IEEE, 4: 1942-1948.

     

    Lei X J. 2012. Swarm Intelligent Optimization Algorithms and Their Applications (in Chinese). Beijing: Science Press.

     

    Li J, Dang J W, Bu F. 2013. Research and improvment of bacteria foraging optimization algorithm. Computer Simulation (in Chinese), 30(4): 344-347, 415. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJZ201304081.htm

     

    Li M D, Zhao H, Weng X W, et al. 2016. A novel nature-inspired algorithm for optimization: Virus colony search. Advances in Engineering Software, 92: 65-88. doi: 10.1016/j.advengsoft.2015.11.004

     

    Liang W Q, Wu X, Wang Y F, et al. 2018. A new staggered grid finite difference scheme optimised in the space domain for the first order acoustic wave equation. Exploration Geophysics, 49(6): 898-905. doi: 10.1071/EG17088

     

    Lines L R, Slawinski R, Bording R P. 1999. A recipe for stability of finite-difference wave-equation computations. Geophysics, 64(3): 967-969. doi: 10.1190/1.1444605

     

    Liu L B, Duan P R, Zhang Y Y, et al. 2020. Overview of mesh-free method of seismic forward numerical simulation. Progress in Geophysics (in Chinese), 35(5): 1815-1825, doi: 10.6038/pg2020DD0117.

     

    Liu Y. 2013. Globally optimal finite-difference schemes based on least squares. Geophysics, 78(4): T113-T132. doi: 10.1190/geo2012-0480.1

     

    Miao Z Z, Zhang J H. 2020. Reducing error accumulation of optimized finite-difference scheme using the minimum norm. Geophysics, 85(5): T275-T291. doi: 10.1190/geo2019-0758.1

     

    Passino K M. 2002. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine, 22(3): 52-67. doi: 10.1109/MCS.2002.1004010

     

    Pillay N. 2016. A review of hyper-heuristics for educational timetabling. Annals of Operations Research, 239(1): 3-38. doi: 10.1007/s10479-014-1688-1

     

    Qu R, Pham N, Bai R B, et al. 2015. Hybridising heuristics within an estimation distribution algorithm for examination timetabling. Applied Intelligence, 42(4): 679-693. doi: 10.1007/s10489-014-0615-0

     

    Ren Y J, Huang J P, Yong P, et al. 2018. Optimized staggered-grid finite-difference operators using window functions. Applied Geophysics, 15(2): 253-260. doi: 10.1007/s11770-018-0668-7

     

    Wang J, Meng X H, Liu H, et al. 2017. Cosine-modulated window function-based staggered-grid finite-difference forward modeling. Applied Geophysics, 14(1): 115-124. doi: 10.1007/s11770-017-0596-y

     

    Wang Z Y, Liu H, Tang X D, et al. 2015. Optimized finite-difference operators based on Chebyshev auto-convolution combined window function. Chinese Journal of Geophysics (in Chinese), 58(2): 628-642, doi: 10.6038/cjg20150224.

     

    Yan H Y, Yang L, Li X Y. 2016. Optimal staggered-grid finite-difference schemes by combining Taylor-series expansion and sampling approximation for wave equation modeling. Journal of Computational Physics, 326: 913-930. doi: 10.1016/j.jcp.2016.09.019

     

    Yang L, Yan H Y, Liu H. 2017. Optimal staggered-grid finite-difference schemes based on the minimax approximation method with the Remez algorithm. Geophysics, 82(1): T27-T42. doi: 10.1190/geo2016-0171.1

     

    Zhang J H, Yao Z X. 2013. Optimized finite-difference operator for broadband seismic wave modeling. Geophysics, 78(1): A13-A18. doi: 10.1190/geo2012-0277.1

     

    杜泽源, 吴国忱, 李雨生. 2019. 基于最小二乘的三维正交介质弹性波高精度正演模拟. 地球物理学进展, 34(1): 69-79, doi: 10.6038/pg2019BB0566.

     

    雷秀娟. 2012. 群智能优化算法及其应用. 北京: 科学出版社.

     

    李珺, 党建武, 卜锋. 2013. 细菌觅食优化算法的研究与改进. 计算机仿真, 30(4): 344-347, 415. doi: 10.3969/j.issn.1006-9348.2013.04.078

     

    刘立彬, 段沛然, 张云银等. 2020. 基于无网格的地震波场数值模拟方法综述. 地球物理学进展, 35(5): 1815-1825, doi: 10.6038/pg2020DD0117.

     

    王之洋, 刘洪, 唐祥德等. 2015. 基于Chebyshev自褶积组合窗的有限差分算子优化方法. 地球物理学报, 58(2): 628-642, doi: 10.6038/cjg20150224.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  2841
  • PDF下载数:  222
  • 施引文献:  0
出版历程
收稿日期:  2020-12-03
修回日期:  2021-06-08
上线日期:  2021-07-10

目录