高温高压下斜长角闪岩电导率研究及其地球物理启示

申珂玮, 王多君, 刘涛. 2020. 高温高压下斜长角闪岩电导率研究及其地球物理启示. 地球物理学报, 63(9): 3398-3408, doi: 10.6038/cjg2020N0461
引用本文: 申珂玮, 王多君, 刘涛. 2020. 高温高压下斜长角闪岩电导率研究及其地球物理启示. 地球物理学报, 63(9): 3398-3408, doi: 10.6038/cjg2020N0461
SHEN KeWei, WANG DuoJun, LIU Tao. 2020. Electrical conductivity of amphibolite at high temperature and high pressure and its geophysical implications. Chinese Journal of Geophysics (in Chinese), 63(9): 3398-3408, doi: 10.6038/cjg2020N0461
Citation: SHEN KeWei, WANG DuoJun, LIU Tao. 2020. Electrical conductivity of amphibolite at high temperature and high pressure and its geophysical implications. Chinese Journal of Geophysics (in Chinese), 63(9): 3398-3408, doi: 10.6038/cjg2020N0461

高温高压下斜长角闪岩电导率研究及其地球物理启示

  • 基金项目:

    国家自然科学基金项目(91958216,41874104)和中央高校基本科研业务费专项资金资助

详细信息

Electrical conductivity of amphibolite at high temperature and high pressure and its geophysical implications

More Information
  • 中下地壳和俯冲带区域的高电导率异常(0.01~1 S·m-1)可能与地球内部的特定物质及其变化有关.斜长角闪岩是中下地壳以及俯冲带区域的重要组成之一,高温高压下斜长角闪岩的电导率研究对认识电导率异常具有重要意义.本研究采用交流阻抗谱法,在0.5,1.0,1.5 GPa和473~1073 K条件下测量了天然斜长角闪岩样品的复阻抗,实验结果表明压力对斜长角闪岩的电导率影响非常小,而温度对于电导率影响非常显著,其电导率在1073 K可以达到10-0.5 S·m-1;实验获得的活化能值为52.21 kJ·mol-1,推断其导电机制可能为小极化子传导(Fe2+的氧化)主导.结合本实验获得的结果与大陆岩石圈和俯冲带的温度结构,我们计算得到相应的电性结构剖面,并与三种不同构造背景下的大陆岩石圈(克拉通、大陆裂谷和活动造山带)和俯冲带区域的电磁剖面结构进行了对比研究,结果发现斜长角闪岩可以解释大陆裂谷和活动造山带构造背景下的莫霍面附近的高电导率异常现象,同时可能是导致较热的俯冲带区域(例如卡斯卡迪地区)高电导率异常现象的原因.

  • 加载中
  • 图 1 

    电导率实验前后斜长角闪岩样品扫描电子显微镜图片

    Figure 1. 

    SEM images of the amphibolite sample before and after conductivity measurements

    图 2 

    斜长角闪岩电导率实验测量装置图

    Figure 2. 

    Sample assembly for measurements of electrical conductivity of amphibolite

    图 3 

    压力为1.0 GPa时不同温度条件下的斜长角闪岩样品阻抗谱图

    Figure 3. 

    Complex impedance spectra of amphibolite at different temperatures at 1.0 GPa

    图 4 

    (a) 1.0 GPa, 473~1073 K条件下,斜长角闪岩样品不同的升降温阶段的log σ-10000/T关系图; (b) 0.5, 1.0, 1.5 GPa, 473~1073 K条件下斜长角闪岩样品log σ-10000/T数据图

    Figure 4. 

    (a) Logarithm of electrical conductivity versus reciprocal temperature for amphibolite at different heating and cooling cycles at pressure of 1.0 GPa and temperature range of 473~1073 K; (b) Logarithm of electrical conductivity versus reciprocal temperature for amphibolite at pressures of 0.5, 1.0, 1.5 GPa and temperature range of 473~1073 K

    图 5 

    实验前后斜长角闪岩的傅里叶红外光谱图

    Figure 5. 

    FTIR spectra for amphibolite before and after experiments

    图 6 

    本研究测得的斜长角闪岩电导率与前人研究的对比

    Figure 6. 

    Comparison of electrical conductivity of amphibolite of this study with previous studies

    图 7 

    不同铁含量的角闪岩(石)在673 K的电导率

    Figure 7. 

    Electrical conductivity of amphibolite (amphibole) with various iron content at 673 K

    图 8 

    (a) 斜长角闪岩电导率的实验室测量值与不同地温梯度结合得到的电磁结构剖面,及其与元古代克拉通,毛里塔尼亚构造带和格里高利裂谷电磁结构剖面对比图;(b)俯冲带区域不同地温梯度条件下,斜长角闪岩的电导率与不同俯冲带地区的大地电磁观测数据对比图

    Figure 8. 

    (a) Comparison of laboratory-based conductivity profiles obtained from this study with Archean craton, Mauritanides belt and Gregorian rift; (b) Comparison of laboratory-based conductivity profiles obtained from this study with subduction regions with different geothermal gradients

    表 1 

    斜长角闪岩电子探针分析(wt.%)

    Table 1. 

    Electron microprobe analysis of amphibolite

    Pl Am
    SiO2 66.76 43.24
    TiO2 0.02 1.14
    Al2O3 21.11 9.99
    Cr2O3 0.01 0.06
    FeO 0.06 17.92
    MnO 0.01 0.26
    MgO 0.00 9.23
    CaO 1.75 11.24
    Na2O 10.14 1.41
    K2O 0.22 0.87
    总量 100.08 95.36
    注:Pl斜长石,Am角闪石.
    下载: 导出CSV

    表 2 

    斜长角闪岩电导率拟合所得参数表

    Table 2. 

    The fitting parameters for electrical conductivity of amphibolite

    P(GPa) T/K log10σ0/(S·m-1) ΔU/(kJ·mol-1) ΔV/(cm3·mol-1)
    0.5,1.0,1.5 473~1073 1.93±0.09 52.21±2.61 0.33 ±0.02
    下载: 导出CSV
  •  

    Akella J, Vaidya S N, Kennedy G C. 1970. Melting of sodium chloride at pressures to 65 kbar. Physical Review B, 2(10):4306. http://prola.aps.org/abstract/PR/v185/i3/p1135_1

     

    Bagdassarov N, Batalev V, Egorova V. 2011. State of lithosphere beneath Tien Shan from petrology and electrical conductivity of xenoliths. Journal of Geophysical Research:Solid Earth, 116(B1):B01202, doi:10.1029/2009JB007125.

     

    Brasse H, Eydam D. 2008. Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin. Journal of Geophysical Research:Solid Earth, 113(B7):B07109, doi:10.1029/2007JB005142.

     

    Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust:A global view. Journal of Geophysical Research:Solid Earth, 100(B6):9761-9788, doi:10.1029/95JB00259.

     

    Cull J P. 1989. Geothermal models and mantle rheology in Australia. Tectonophysics, 164(2-4):107-115, doi:10.1016/0040-1951(89)90004-8.

     

    Duba A, Heikamp S, Meurer W, et al. 1994. Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. Nature, 367(6458):59-61, doi:10.1038/367059a0.

     

    Essene E J, Hensen B J, Green D H. 1970. Experimental study of amphibolite and eclogite stability. Physics of the Earth and Planetary Interiors, 3:378-384, doi:10.1016/0031-9201(70)90078-6.

     

    Evans R L, Wannamaker P E, McGary R S, et al. 2014. Electrical structure of the central Cascadia subduction zone:The EMSLAB Lincoln Line revisited. Earth and Planetary Science Letters, 402:265-274, doi:10.1016/j.epsl.2013.04.021.

     

    Fuji-ta K, Katsura T, Tainosho Y. 2004. Electrical conductivity measurement of granulite under mid-to lower crustal pressure-temperature conditions. Geophysical Journal International, 157(1):79-86, doi:10.1111/j.1365-246X.2004.02165.x.

     

    Glover P W J, Vine F J. 1994. Electrical conductivity of the continental crust. Geophysical Research Letters, 21(22):2357-2360, doi:10.1029/94GL01015.

     

    Guo X Z, Yoshino T, Katayama I. 2011. Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3 GPa. Physics of the Earth and Planetary Interiors, 188(1-2):69-81, doi:10.1016/j.pepi.2011.06.012.

     

    Hacker B R, Abers G A, Peacock S M. 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research:Solid Earth, 2003, 108(B1):2029, doi:10.1029/2001jb001127.

     

    Hashin Z, Shtrikman S. 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2):127-140, doi:10.1016/0022-5096(63)90060-7.

     

    Hu H Y, Li H P, Dai L D, et al. 2013. Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures. Physics and Chemistry of Minerals, 40(1):51-62, doi:10.1007/s00269-012-0546-4.

     

    Hu H Y, Dai L D, Li H P, et al. 2017. Influence of dehydration on the electrical conductivity of epidote and implications for high-conductivity anomalies in subduction zones. Journal of Geophysical Research:Solid Earth, 122(4):2751-2762. doi: 10.1002/2016JB013767

     

    Hu H Y, Dai L D, Li H P, et al. 2018. Effect of dehydrogenation on the electrical conductivity of Fe-bearing amphibole:Implications for high conductivity anomalies in subduction zones and continental crust. Earth and Planetary Science Letters, 498:27-37, doi:10.1016/j.epsl.2018.06.003.

     

    Ichiki M, Sumitomo N, Kagiyama T. 2000. Resistivity structure of high-angle subduction zone in the southern Kyushu district, southwestern Japan. Earth, Planets and Space, 52(8):539-548, doi:10.1186/BF03351661.

     

    Jin S, Ye G F, Wei W B, et al. 2006. The electrical structure and fault feature of crust of south-eastern Tibetan plateau-the result of magnetotelluric prospecting on profile from Xiachayu-Changdu. Geoscience Frontiers (in Chinese), 13(5):408-415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200605016

     

    Jones A G. 1992. Electrical conductivity of the continental lower crust.//Fountain D M, Arculus R J, Kay R W eds. Continental Lower Crust. Amsterdam: Elsevier, 81-143.

     

    Jones A G. 2013. Imaging and observing the electrical Moho. Tectonophysics, 609:423-436, doi:10.1016/j.tecto.2013.02.025.

     

    Karato S I, Wang D J. 2012. Electrical conductivity of minerals and rocks.//Karato S I ed. Physics and Chemistry of the Deep Earth. New York: Wiley, 145-182.

     

    Kawano S, Yoshino T, Katayama I. 2012. Electrical conductivity of magnetite-bearing serpentinite during shear deformation. Geophysical Research Letters, 39(20):L20313, doi:10.1029/2012GL053652.

     

    Littler J G F, Williams R J P. 1965. Electrical and optical properties of crocidolite and some other iron compounds. Journal of the Chemical Society, 1182:6368-6371. http://pubs.rsc.org/en/content/articlepdf/1965/JR/JR9650006368

     

    Liu L G, El Gorsey A. 2007. High-pressure phase transitions of the feldspars, and further characterization of lingunite. International Geology Review, 49(9):854-860, doi:10.2747/0020-6814.49.9.854.

     

    Manthilake G, Mookherjee M, Bolfan-Casanova N, et al. 2015. Electrical conductivity of lawsonite and dehydrating fluids at high pressures and temperatures. Geophysical Research Letters, 42(18):7398-7405, doi:10.1002/2015GL064804.

     

    McGary R S, Evans R L, Wannamaker P E, et al. 2014. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier. Nature, 511(7509):338-340, doi:10.1038/nature13493.

     

    Meju M A, Sakkas V. 2007. Heterogeneous crust and upper mantle across southern Kenya and the relationship to surface deformation as inferred from magnetotelluric imaging. Journal of Geophysical Research:Solid Earth, 112(B4):B04103, doi:10.1029/2005jb004028.

     

    Mibe K, Fujii T, Yasuda A. 1999. Control of the location of the volcanic front in island arcs by aqueous fluid connectivity in the mantle wedge. Nature, 401(6750):259-262, doi:10.1038/45762.

     

    Min G, Wang X B, Xia S B, et al. 2017. Electrical structure of middle and upper crust beneath the Minshan uplift zone and central section of the West Qinling orogenic zone. Chinese Journal of Geophysics (in Chinese), 60(6):2397-2413, doi:10.6038/cjg20170629.

     

    Muller M R, Jones A G, Evans R L, et al. 2009. Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and western Kaapvaal Craton, southern Africa:Constraints from broadband magnetotellurics. Lithos, 112(S1):93-105, doi:10.1016/j.lithos.2009.06.023.

     

    Ni H W, Keppler H, Manthilake M A G M, et al. 2011. Electrical conductivity of dry and hydrous NaAlSi3O8 glasses and liquids at high pressures. Contributions to Mineralogy and Petrology, 162(3):501-513, doi:10.1007/s00410-011-0608-5.

     

    Partzsch G M, Schilling F, Arndt J. 2000. The influence of partial melting on the electrical behavior of crustal rocks:Laboratory examinations, model calculations and geological interpretations. Tectonophysics, 317(3-4):189-203, doi:10.1016/S0040-1951(99)00320-0.

     

    Penniston-Dorland S C, Kohn M J, Manning C E. 2015. The global range of subduction zone thermal structures from exhumed blueschists and eclogites:rocks are hotter than models. Earth and Planetary Science Letters, 428:243-254, doi:10.1016/j.epsl.2015.07.031.

     

    Phillips M W, Popp R K, Clowe C A. 1988. Structural adjustments accompanying oxidation-dehydrogenation in amphiboles. American Mineralogist, 73(5-6):500-506. http://ci.nii.ac.jp/naid/80003890970

     

    Pommier A. 2014. Geophysical assessment of migration and storage conditions of fluids in subduction zones. Earth, Planets and Space, 66:38, doi:10.1186/1880-5981-66-38.

     

    Pommier A, Williams Q, Evans R L, et al. 2019. Electrical investigation of natural lawsonite and application to subduction contexts. Journal of Geophysical Research:Solid Earth, 124(2):1430-1442, doi:10.1029/2018JB016899.

     

    Ritz M, Robineau B. 1986. Crustal and upper mantle electrical conductivity structures in West Africa:Geodynamic implications. Tectonophysics, 124(1-2):115-132, doi:10.1016/0040-1951(86)90140-X.

     

    Roberts J J, Tyburczy J A. 1991. Frequency dependent electrical properties of polycrystalline olivine compacts. Journal of Geophysical Research:Solid Earth, 96(B10):16205-16222, doi:10.1029/91JB01574.

     

    Schilling F R, Partzsch G M, Brasse H, et al. 1997. Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Physics of the Earth and Planetary Interiors, 103(1-2):17-31, doi:10.1016/S0031-9201(97)00011-3.

     

    Schmidbauer E, Kunzmann T, Fehr T, et al. 1996. Electrical conductivity, thermopower and 57Fe Mössbauer spectroscopy of an Fe-rich amphibole, arfvedsonite. Physics and Chemistry of Minerals, 23(2):99-106. http://dx.doi.org/10.1007/bf00202305

     

    Schmidbauer E, Kunzmann T, Fehr T, et al. 2000. Electrical resistivity and 57Fe Mössbauer spectra of Fe-bearing calcic amphiboles. Physics and Chemistry of Minerals, 27(5):347-356, doi:10.1007/s002690050264.

     

    Shankland T J, Ander M E. 1983. Electrical conductivity, temperatures, and fluids in the lower crust. Journal of Geophysical Research:Solid Earth, 88(B11):9475-9484, doi:10.1029/JB088iB11p09475.

     

    Soyer W, Unsworth M. 2006. Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone:Implications for the distribution of fluids. Geology, 34(1):53-56. http://adsabs.harvard.edu/abs/2006Geo....34...53S

     

    Stein C A, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359(6391):123-129, doi:10.1038/359123a0.

     

    Stern R J. 2002. Subduction zones. Reviews of Geophysics, 40(4):1012, doi:10.1029/2001RG000108.

     

    Syracuse E M, Van Keken P E, Abers G A. 2010. The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183(1-2):73-90, doi:10.1016/j.pepi.2010.02.004.

     

    Tolland H G. 1973. Mantle conductivity and electrical properties of garnet, mica and amphibole. Nature Physical Science, 241(106):35-36, doi:10.1038/physci241035a0.

     

    Turcotte D, Schubert G. 2014. Geodynamics. 3rd ed. Cambridge:Cambridge University Press, 636.

     

    Vanyan L L, Gliko A O. 1999. Seismic and electromagnetic evidence of dehydration as a free water source in the reactivated crust. Geophysical Journal International, 137(1):159-162, doi:10.1046/j.1365-246x.1999.00767.x.

     

    Wang D J, Yi L, Xie H S, et al. 2005. Impedance spectroscopy and its application to material science of the Earth's interior. Earth Science Frontiers (in Chinese), 12(1):123-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200501016

     

    Wang D J, Guo Y X, Yu Y J, et al. 2012. Electrical conductivity of amphibole-bearing rocks:influence of dehydration. Contributions to Mineralogy and Petrology, 164(1):17-25, doi:10.1007/s00410-012-0722-z.

     

    Wang D J, Liu X W, Liu T, et al. 2017. Constraints from the dehydration of antigorite on high-conductivity anomalies in subduction zones. Scientific Reports, 7:16893, doi:10.1038/s41598-017-16883-4.

     

    Wang Q, Bagdassarov N, Ji S C. 2013. The Moho as a transition zone:A revisit from seismic and electrical properties of minerals and rocks. Tectonophysics, 609:395-422, doi:10.1016/j.tecto.2013.08.041.

     

    Wannamaker P E, Caldwell T G, Jiracek G R, et al. 2009. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature, 460(7256):733-736. doi: 10.1038/nature08204

     

    Wei W B, Jin S, Ye G F, et al. 2006. Conductivity structure ofcrust and upper mantle beneath the northern Tibetan Plateau:Results of super-wide band magnetotelluric sounding. Chinese Journal of Geophysics (in Chinese), 49(4):1215-1225. http://d.old.wanfangdata.com.cn/Periodical_dqwlxb200604038.aspx

     

    Worzewski T, Jegen M, Kopp H, et al. 2010. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nature Geoscience, 4(2):108-111, doi:10.1038/ngeo1041.

     

    Yang X Z, Keppler H, McCammon C, et al. 2012. Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contributions to Mineralogy and Petrology, 163(1):33-48, doi:10.1007/s00410-011-0657-9.

     

    Yoshino T. 2010. Laboratory electrical conductivity measurement of mantle minerals. Surveys in Geophysics, 31(2):163-206, doi:10.1007/s10712-009-9084-0.

     

    Zhou W G, Fan D W, Liu Y G, et al. 2011. Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700℃:comparison with field observations. Geophysical Journal International, 187(3):1393-1404. http://gji.oxfordjournals.org/content/187/3/1393.full.pdf+html?frame=sidebar

     

    Zhu M X, Xie H S, Guo J, et al. 2001. An experimental study on electrical conductivity of talc at high temperature and high pressure. Chinese Journal of Geophysics (in Chinese), 44(3):429-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.158

     

    金胜, 叶高峰, 魏文博等. 2006.青藏高原东南部地壳导电性结构与断裂构造特征——下察隅-昌都剖面大地电磁探测结果.地学前缘, 13(5):408-415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200605016

     

    闵刚, 王绪本, 夏时斌等. 2017.岷山隆起带与西秦岭构造带中段中上地壳电性结构特征.地球物理学报, 60(6):2397-2413, doi:10.6038/cjg20170629. http://www.geophy.cn//CN/abstract/abstract13781.shtml

     

    王多君, 易丽, 谢鸿森等. 2005.交流阻抗谱法及其在地球深部物质科学中的应用.地学前缘, 12(1):123-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200501016

     

    魏文博, 金胜, 叶高峰等. 2006.藏北高原地壳及上地幔导电性结构——超宽频带大地电磁测深研究结果.地球物理学报, 49(4):1215-1225. http://www.geophy.cn//CN/abstract/abstract22.shtml

     

    朱茂旭, 谢鸿森, 郭捷等. 2001.高温高压下滑石的电导率实验研究.地球物理学报, 44(3):429-435. http://www.geophy.cn//CN/abstract/abstract3653.shtml

  • 加载中

(8)

(2)

计量
  • 文章访问数:  2012
  • PDF下载数:  474
  • 施引文献:  0
出版历程
收稿日期:  2020-01-04
修回日期:  2020-03-27
上线日期:  2020-09-05

目录