南海南部礼乐盆地礁体发育区的构造热演化特征

王丽芳, 施小斌, 任自强, 裴健翔, 杨小秋, 谌永强, 史德锋, 刘奎, 赵鹏, 闫安菊. 2020. 南海南部礼乐盆地礁体发育区的构造热演化特征. 地球物理学报, 63(8): 3050-3062, doi: 10.6038/cjg2020N0410
引用本文: 王丽芳, 施小斌, 任自强, 裴健翔, 杨小秋, 谌永强, 史德锋, 刘奎, 赵鹏, 闫安菊. 2020. 南海南部礼乐盆地礁体发育区的构造热演化特征. 地球物理学报, 63(8): 3050-3062, doi: 10.6038/cjg2020N0410
WANG LiFang, SHI XiaoBin, REN ZiQiang, PEI JianXiang, YANG XiaoQiu, SHEN YongQiang, SHI DeFeng, LIU Kui, ZHAO Peng, YAN AnJu. 2020. Tectono-thermal evolution features of the reef body developing area in the Liyue Basin, southern South China Sea. Chinese Journal of Geophysics (in Chinese), 63(8): 3050-3062, doi: 10.6038/cjg2020N0410
Citation: WANG LiFang, SHI XiaoBin, REN ZiQiang, PEI JianXiang, YANG XiaoQiu, SHEN YongQiang, SHI DeFeng, LIU Kui, ZHAO Peng, YAN AnJu. 2020. Tectono-thermal evolution features of the reef body developing area in the Liyue Basin, southern South China Sea. Chinese Journal of Geophysics (in Chinese), 63(8): 3050-3062, doi: 10.6038/cjg2020N0410

南海南部礼乐盆地礁体发育区的构造热演化特征

  • 基金项目:

    国家科技重大专项课题(2017ZX05026-005),国家自然科学基金项目(41776078)和南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0104)资助

详细信息
    作者简介:

    王丽芳, 女, 1982年生, 工程师, 主要从事油气地质研究.E-mail:wanglf4@cnooc.com.cn

    通讯作者: 施小斌, 男, 1970年生, 研究员, 主要从事地热地质与海洋地质研究.E-mail:xbshi@scsio.ac.cn
  • 中图分类号: P314

Tectono-thermal evolution features of the reef body developing area in the Liyue Basin, southern South China Sea

More Information
  • 礼乐滩是礼乐盆地的重要组成部分,自晚渐新世礼乐地块裂离北部陆缘后开始发育礁灰岩.为认识这些长期浸没海水中的礼乐礁体及其下伏地层的热状态与热演化特征,在详细分析礼乐滩钻井测温数据和镜质体反射率数据的基础上,对一条穿过礁体的骨干剖面进行了构造热演化数值模拟.结果显示,礁体区钻井2000~4500 m深度范围内温度介于30~90℃之间,井底与海底之间的平均地温梯度仅10℃·km-1左右,地温梯度随深度逐渐增加,3000~4000 m深度段地温梯度介于32~37℃·km-1;礁体下伏地层有机质曾经经历了比现今所处温度更高的古温度.进一步分析表明,高孔高渗的礁体上部因与周围低温海水发生热交换,导致地层温度降低、地温梯度和热流降低甚至为负值;与海水热交换作用随深度增加而减弱并最终停止,地层温度逐渐升高,地温梯度和热流值趋于正常;现今钻井3000~4000 m深度段地温梯度约为35℃·km-1,基底热流可能介于65~75 mW·m-2,平均约为70 mW·m-2;礁体发育区有机质热成熟度主要是在礁体与周围低温海水发生实际热交换前获得的,礁体与海水热交换作用导致地层温度逐渐降低,有机质热成熟度增长缓慢,现今生烃门限深度明显大于邻近的北1凹陷中部区域的门限深度.

  • 加载中
  • 图 1 

    (a) 礼乐盆地构造区划;(b)礼乐滩海域水深分布与钻井位置图.图(a)中暗红色方框为图(b)范围,海盆中部红色虚线为夭折洋中脊;图(a)、(b)中黑色直线为JK测线

    Figure 1. 

    (a) Tectonic framework of the Liyue Basin, and (b) Bathymetry in and around Reed Bank showing the locations of oil and gas drills. In (a), the dark red box shows the cover region of (b), and the dark red dashed curve in the oceanic basin donates the failed mid-ocean ridge. In (a) and (b), the black Line shows the location of the analyzed Profile JK

    图 2 

    (a) 礼乐滩钻井实测温度随钻井深度变化; (b)礼乐滩钻井Ro随深度变化图.(a)中实线为海底温度随水深的变化(施小斌等,2015),虚线为对应不同地温梯度的温度随深度变化;(b)中的大实心圆为计算得到的Ro%

    Figure 2. 

    (a) Observed temperature data versus depth, and (b) Ro% versus depth in the drills of the Reed Bank. In (a), the solid curve shows the seafloor temperature versus seafloor depth in the South China Sea (after Shi et al., 2015), and the dashed lines show temperature increasing with depth at different thermal gradients. In (b), the larger solid circles are calculated Ro%

    图 3 

    (a) JK剖面的时间剖面; (b) JK剖面的深度剖面; (c) JK剖面的地壳厚度与拉张因子变化.图a、b地层界面年龄见文中说明,JK剖面位置见图 1a

    Figure 3. 

    (a) Stratigraphic two way travel time structure along Profile JK; (b) Stratigraphic depth structure along Profile JK; (c) Crustal thickness and stretching factors variation along Profile JK. In (a) and (b), the stratigraphic boundary ages are given in the text. The location of Profile JK is shown in Fig. 1a

    图 4 

    耦合岩石圈变形、沉积过程和热过程的计算模型示意图.(a)张裂前初始模型结构,显示分层结构和运动学边界条件; (b)演化过程中某一时刻的模型结构,显示地温场计算的边界条件.模型由4层组成,其中层1为软流圈部分,初始厚度为1 km,层2为岩石圈地幔部分,层3为下地壳,层4为上地壳和沉积层,层2、层3和层4构成岩石圈部分,初始岩石圈厚度a为125 km,地壳层3和层4等厚.(a)中uv分别为水平和垂向速度,x, z, t为水平坐标、垂向坐标和时间;(b)中T为温度

    Figure 4. 

    Sketch diagram of the numerical model coupling lithospheric deformation, sedimentation and thermal diffusion. (a) Initial model structure showing layered structure and boundary conditions of velocity field; (b) The model structure with boundary conditions of thermal field at some time during basin evolution. The model is composed of 4 layers, and Layer 1 consists of asthenosphere material, whose initial thickness is 1 km. Layer 2 is lithospheric mantle. Layers 3 and 4 represent lower crust and upper crust (including basin fill), respectively. The initial lithospheric thickness a including Layers 2, 3 and 4 is 125 km. Layer 3 and Layer 4 are equal in thickness. In (a), variables u and v denote horizontal and vertical velocities, respectively. Variables x, z and t denote horizontal, vertical coordinate, and time, respectively. In (b), variable T denotes temperature

    图 5 

    (a) 钻井实测温度与计算结果对比; (b)钻井实测Ro%与计算结果对比.(a)中细实线表示海底温度随水深的变化(施小斌等,2015),其他粗线为计算得到的剖面代表点的地层温度随深度(海底以下)的变化,五角星为钻井A1-x的井底温度.(b)中三角点为实测Ro%,曲线为计算得到的剖面代表点的Ro%随深度(海底以下)的变化.(a)和(b)中的绿色虚线分别表示没有考虑礁体和海水热交换时的PB点温度和Ro%随深度的变化.剖面代表点PB、PC和PD位置见图 6

    Figure 5. 

    (a) Comparison graph between observed and calculated temperature; (b) Comparison graph between observed and calculated Ro%. In (a), the thin solid curve shows seafloor temperature variation with water depth (Shi et al., 2015), while other curves show calculated formation temperature variation with depth below seafloor at different representative locations of Profile JK. The star point is the bottom temperature of Drill Al-x. In (b), the triangles are observed Ro, while the curves show the Ro% variation with depth below seafloor at different locations along Profile JK. The green dashed curves in (a) and (b) show the calculated temperature and Ro% versus depth at PB point, respectively, when ignoring the thermal exchange between reef and surrounding sea water. The locations of Points PB、PC and PD are shown in Fig. 6

    图 6 

    (a) 剖面JK的现今地温梯度; (b)剖面JK的现今热流;(c)剖面JK的现今地温场.(a)和(b)中,蓝色线、绿色线和红色线分别代表经过海底、基底和沉积柱体的现今地温梯度和热流沿剖面的变化.(c)中红色三角为剖面代表点PA、PB、PC和PD的位置,地层界线与图 3相同

    Figure 6. 

    (a) present thermal gradient along Profile JK, (b) present heat flow and (c) present temperature field along Profile JK. In (a) and (b), the blue, green and red curves show the thermal gradient and heat flow across seafloor, sedimentary basement, and the whole sedimentary column, respectively. In (c), the red triangles show the locations of representative points PA, PB, PC and PD along Profile JK. The stratigraphic boundaries in (c) are the same as Fig. 3

    图 7 

    (a) 剖面代表点的海底热流史; (b)剖面代表点的基底热流史.剖面代表点PB、PC和PD位置见图 6

    Figure 7. 

    (a) Seafloor heat flow history, and (b) Heat flow history across sedimentary basement at different representative points along Profile JK. See Fig. 6 for the representative point locations of PB, PC and PD

    图 8 

    (a) 剖面参考点的埋藏史;(b)剖面参考点的热史;(c)剖面参考点的Ro%史.其中,剖面参考点PA、PB、PC和PD为剖面代表点PA、PB、PC和PD现今埋深为3000mbsf处的点,代表点PA、PB、PC和PD位置见图 6

    Figure 8. 

    (a) Burial histories, (b) thermal histories, and (c) Ro% histories at different reference points. In which, the reference points of PA, PB, PC and PD are now buried at the depth of 3000 mbsf at representative points of PA, PB, PC and PD, respectively. See Fig. 6 for the representative point locations of PA, PB, PC and PD

    图 9 

    计算剖面现今的Ro%分布

    Figure 9. 

    Present Ro% distribution along Profile JK

    表 1 

    模型参数与取值

    Table 1. 

    Model parameters and values

    参数
    初始岩石圈厚度 125 km
    软流圈密度 3185 kg·m-3
    下地壳密度0℃ 2850 kg·m-3
    砂岩骨架密度0℃ 2650 kg·m-3
    泥岩骨架密度0℃ 2720 kg·m-3
    砂岩初始沉积孔隙度 0.49
    泥岩初始沉积孔隙度 0.63
    灰岩初始沉积孔隙度 0.6
    砂岩骨架热导率 4.4 Wm/℃
    灰岩骨架热导率 3.0 Wm/℃
    泥岩骨架生热率 2.1 μW·m-3
    上地壳生热率 1.8 μW·m-3
    砂岩骨架比热容 1080 J/(kg·℃)
    灰岩骨架比热容 1030 J/(kg·℃)
    水比热容 4184 J/(kg·℃)
    初始地壳厚度 32 km
    0 ℃岩石圈地幔密度 3330 kg·m-3
    上地壳密度0 ℃ 2700 kg·m-3
    灰岩骨架密度0 ℃ 2700 kg·m-3
    海水密度0 ℃ 1030 kg·m-3
    砂岩压实因子 0.27 ×10-3/m
    泥岩压实因子 0.51×10-3/m
    灰岩岩石因子 0.53×10-3/m
    泥岩骨架热导率 2.2 Wm/℃
    砂岩骨架生热率 1.6 μW·m-3
    灰岩骨架生热率 0.6 μW·m-3
    下地壳生热率 0.5 μW·m-3
    泥岩骨架比热容 1050 J/(kg·℃)
    软流圈、岩石圈比热容 1050 J/(kg·℃)
    岩石圈热膨胀系数 3.28×10-5-1
    下载: 导出CSV
  •  

    Allen P A, Allen J R. 2005. Basin Analysis:Principles and Application to Petroleum Play Assessment. Oxford:Blackwell Publishing, 282-305.

     

    Aurelio M A, Forbes M T, Taguibao K J L, et al. 2014. Middle to Late Cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the south-eastern margin of South China Sea:Evidence from onshore structural and offshore seismic data. Marine and Petroleum Geology, 58:658-673. doi: 10.1016/j.marpetgeo.2013.12.002

     

    Buntebarth G. 1984. Geothermics:An Introduction. Berlin:Springer-Verlag, 9-21.

     

    Burnham A K. 2019. Kinetic models of vitrinite, kerogen, and bitumen reflectance. Organic Geochemistry, 131:50-59. doi: 10.1016/j.orggeochem.2019.03.007

     

    Chen A H, Xu X, Luo X H, et al. 2017. Heat flow characteristics and controlling factors of the Baikang Basin in South China Sea. Acta Geologica Sinica (in Chinese), 91(8):1720-1728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201708005

     

    Clift P, Lin J, Barckhausen U. 2002. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea. Marine and Petroleum Geology, 19(8):951-970. doi: 10.1016/S0264-8172(02)00108-3

     

    Ding W W, Li J B, Dong C Z, et al. 2015. Oligocene-Miocene carbonates in the Reed Bank area, South China Sea, and their tectono-sedimentary evolution. Marine Geophysical Research, 36(2-3):149-165. doi: 10.1007/s11001-014-9237-5

     

    Dowdle W L, Cobb W M. 1975. Static formation temperature from well logs, an empirical method. Journal of Petroleum Technology, 27(11):1326-1330. doi: 10.2118/5036-PA

     

    Du X B, Lu Y C, Pei J X, et al. 2018. A development model for late oligocene to early miocene reefs in the Liyue Basin of South China Sea. Marine Geology & Quaternary Geology (in Chinese), 38(6):98-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201806010

     

    Duan L, Pei J X, Zhang Y Z, et al. 2018. Tectonic characteristics of extensional detachment basin in southern South China Sea. Marine Origin Petroleum Geology (in Chinese), 23(4):71-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201804008

     

    Fang P G, Ding W W, Fang Y X, et al. 2015. Development of carbonate platform and its response to Cenozoic tectonic in Reed Bank area, the South China Sea. Earth Science-Journal of China University of Geosciences (in Chinese), 40(12):2052-2066. doi: 10.3799/dqkx.2015.182

     

    Fournier F, Borgomano J, Montaggioni L F. 2005. Development patterns and controlling factors of Tertiary carbonate buildups:Insights from high-resolution 3D seismic and well data in the Malampaya gas field (Offshore Palawan, Philippines). Sedimentary Geology, 175(1-4):189-215. doi: 10.1016/j.sedgeo.2005.01.009

     

    Fu H, Zeng Y, Zhou X K, et al. 2018. Geological conditions of formation of Cenozoic carbonate Rocks in the pearl river mouth basin. Acta Geologica Sinica (in Chinese), 92(11):2349-2358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201811010

     

    Hermanrud C, Cao S, Lerche I. 1990. Estimates of Virgin rock temperature derived from BHT measurements; Bias and Error. Geophysics, 55(7):924-931. doi: 10.1190/1.1442908

     

    Liu Q Y, He L J. 2015. Discussion on several problems in tectono-thermal modeling of rift basins. Chinese Journal of Geophysics (in Chinese), 58(2):601-612, doi:10.6038/cjg20150222.

     

    Liu Y Q, Wu Z P, Zhang J, et al. 2018. Structural evolution of the Liyue basin in Southern South China Sea and its response to the regional geological background. Acta Geologica Sinica (in Chinese), 92(9):1766-1779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201809002

     

    Mi L J, Zeng Q B, Yang H C. 2013. Types of organic reef and exploration direction in Zhujiang Formation of Dongsha uplift. Acta Petrolei Sinica (in Chinese), 34(S2):24-31. http://cn.bing.com/academic/profile?id=762ff88aed627cc9a6ad8fdaa54fb026&encoded=0&v=paper_preview&mkt=zh-cn

     

    Nissen S S, Hayes D E, Buhl P, et al. 1995. Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research:Solid Earth, 100(B11):22407-22433. doi: 10.1029/95JB01866

     

    Pei J X, Shi X B, Wang L F, et al. 2020. Tectonic subsidence features and their mechanism analyses in the Liyue Basin, South China Sea. Marine Geology & Quaternary Geology (in Chinese), accepted.

     

    Rüpke L H, Schmalholz S M, Schmid D W, et al. 2008. Automated thermotectonostratigraphic basin reconstruction:Viking graben case study. AAPG Bulletin, 92(3):309-326. doi: 10.1306/11140707009

     

    Sclater J G, Christie P A F. 1980. Continental stretching:an explanation of the post-mid-cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research:Solid Earth, 85(B7):3711-3739. doi: 10.1029/JB085iB07p03711

     

    Shi X B, Qiu X L, Xia K Y, et al. 2003. Characteristics of surface heat flow in the South China Sea. Journal of Asian Earth Sciences, 22(3):265-277. http://cn.bing.com/academic/profile?id=f167874866d046203dd77369a4c48937&encoded=0&v=paper_preview&mkt=zh-cn

     

    Shi X B, Wang Z F, Jiang H Y, et al. 2015. Vertical variations of geothermal parameters in rifted basins and heat flow distribution features of the Qiongdongnan Basin. Chinese Journal of Geophysics (in Chinese), 58(3):939-952, doi:10.6038/cjg20150320.

     

    Shi X B, Jiang H Y, Yang J, et al. 2017. Models of the rapid post-rift subsidence in the eastern Qiongdongnan Basin, South China Sea:implications for the development of the deep thermal anomaly. Basin Research, 29(3):340-362. doi: 10.1111/bre.12179

     

    Shi Z Q, Xie Y H, Liu L, et al. 2016. Sedimentology of Carbonate Bioherm Reservoir in Well Xike-1, South China Sea-Reservoir Characteristics and Diagenetic Evolution (in Chinese). Wuhan:China University of Geosciences Press, 147-167.

     

    Steuer S, Franke D, Meresse F, et al. 2013. Time constraints on the evolution of southern Palawan Island, Philippines from onshore and offshore correlation of Miocene limestones. Journal of Asian Earth Sciences, 76:412-427. doi: 10.1016/j.jseaes.2013.01.007

     

    Steuer S, Franke D, Meresse F, et al. 2014. Oligocene-Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea. Marine and Petroleum Geology, 58:644-657. doi: 10.1016/j.marpetgeo.2013.12.010

     

    Su D Q, Liu Y L, Chen X, et al. 2004. 3D Moho depth of the South China Sea.//Zhang Z J, Gao R, Lv Q T, et al., eds. Earths Deep Structure and Dynamic Researches of the Mainland China (in Chinese). Beijing: Science Press, 357-365.

     

    Sun L T, Sun Z, Zhan W H, et al. 2010. Petroleum potential prediction of the Lile Basin in Nansha. Earth Science-Journal of China University of Geosciences (in Chinese), 35(1):137-145. doi: 10.3799/dqkx.2010.014

     

    Sweeney J J, Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74(10):1559-1570. doi: 10.1029/JB095iB11p17849

     

    Taylor B, Hayes D E. 1980. The tectonic evolution of the South China Basin.//Hayes D E ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington D C: Geophysical Monograph Series, 23: 89-104.

     

    Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin.//Hayes D E ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part2. Washington D C: Geophysical Monograph Series, 27: 23-56.

     

    Wang Z F, Shi X B, Yang J, et al. 2014. Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin. Acta Oceanologica Sinica, 33(12):107-117. doi: 10.1007/s13131-014-0580-9

     

    White N, Bellingham P. 2002. A two-dimensional inverse model for extensional sedimentary basins 1. Theory. Journal of Geophysical Research:Solid Earth, 107(B10):ETG 17-1-ETG 17-20, doi:10.1029/2001JB000173.

     

    White N, Thompson M, Barwise T. 2003. Understanding the thermal evolution of deep-water continental margins. Nature, 426(6964):334-343. doi: 10.1038/nature02133

     

    Wu S G, Zhang X Y. 2015. Response of Cenozoic carbonate platform on tectonic evolution in the conjugated margin of South China Sea. Earth Science-Journal of China University of Geosciences (in Chinese), 40(2):234-248. doi: 10.3799/dqkx.2015.017

     

    Wu Z P, Liu Y Q, Zhang J, et al. 2018. Cenozoic characteristics and evolution of fault systems in the Liyue Basin, South China Sea. Earth Science Frontiers (in Chinese), 25(2):221-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201802024

     

    Xu D H, Wang L J, Yao Y J, et al. 2018. Spatial and temporal distribution characteristics of carbonates in Liyue Basin and their tectonic implications. Journal of Tropical Oceanography (in Chinese), 37(6):49-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy201806006

     

    Xu X, Yao Y J, Peng D, et al. 2018. The characteristics and analysis of heat flow in the Southwest sub-basin of South China Sea. Chinese Journal of Geophysics (in Chinese), 61(7):2915-2925, doi:10.6038/cjg2018L0223.

     

    Yao Y J, Liu H L, Yang C P, et al. 2012. Characteristics and evolution of Cenozoic sediments in the Liyue Basin, SE South China Sea. Journal of Asian Earth Sciences, 60:114-129. doi: 10.1016/j.jseaes.2012.08.003

     

    Zhang Y Z, Li J L, Pei J X, et al. 2018. Development conditions and seismic characteristics of the Cenozoic reef in the deepwater area of Liyue Basin, southern South China Sea. Marine Geology & Quaternary Geology (in Chinese), 38(6):108-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201806011

     

    Zhu W L, Zhong K, Li Y C, et al. 2012. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins. Chinese Science Bulletin, 57(24):3121-3129. doi: 10.1007/s11434-011-4940-y

     

    Zhu W L, Wang Z F, Mi L J, et al. 2015. Sequence stratigraphic framework and reef growth unit of well Xike-1 from Xisha Islands, South China Sea. Earth Science-Journal of China University of Geosciences (in Chinese), 40(4):677-687. doi: 10.3799/dqkx.2015.055

     

    陈爱华, 徐行, 罗贤虎等. 2017.南海北康盆地热流分布特征及其构造控制因素探讨.地质学报, 91(8):1720-1728. doi: 10.3969/j.issn.0001-5717.2017.08.005

     

    杜学斌, 陆永潮, 裴健翔等. 2018.南海南部礼乐盆地上渐新统-下中新统生物礁生长模式及分布规律.海洋地质与第四纪地质, 38(6):98-107.

     

    段亮, 裴健翔, 张亚震等. 2018.南海南部裂离型盆地构造特征.海相油气地质, 23(4):71-80. doi: 10.3969/j.issn.1672-9854.2018.04.008

     

    方鹏高, 丁巍伟, 方银霞等. 2015.南海礼乐滩碳酸盐台地的发育及其新生代构造响应.地球科学-中国地质大学学报, 40(12):2052-2066. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201512008

     

    傅恒, 曾驿, 周小康等. 2018.珠江口盆地新生代碳酸盐岩形成地质条件.地质学报, 92(11):2349-2358. doi: 10.3969/j.issn.0001-5717.2018.11.010

     

    刘琼颖, 何丽娟. 2015.裂谷盆地构造-热演化模拟中几个问题的讨论.地球物理学报, 58(2):601-612, doi:10.6038/cjg20150222. http://www.geophy.cn//CN/abstract/abstract11258.shtml

     

    刘雨晴, 吴智平, 张杰等. 2018.南海南部礼乐盆地结构演化及其对区域地质背景的响应.地质学报, 92(9):1766-1779. doi: 10.3969/j.issn.0001-5717.2018.09.002

     

    米立军, 曾清波, 杨海长. 2013.东沙隆起珠江组生物礁类型及勘探方向.石油学报, 34(S2):24-31. doi: 10.7623/syxb2013S2003

     

    裴健翔, 施小斌, 王丽芳等. 2020.南海礼乐盆地新生代构造沉降特征及其成因分析.海洋地质与第四纪地质, 录用.

     

    施小斌, 王振峰, 蒋海燕等. 2015.张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征.地球物理学报, 58(3):940-952, doi:10.6038/cjg20150320. http://www.geophy.cn//CN/abstract/abstract11363.shtml

     

    时志强, 谢玉洪, 刘立. 2016.南海西科1井碳酸盐岩生物礁储层沉积学:储层特征与成岩演化.武汉:中国地质大学出版社, 147-167.

     

    苏达权, 刘元龙, 陈雪等. 2004.南海的三维莫霍界面//张中杰, 高锐, 昌庆田等.中国大陆地球深部结构与动力学研究.北京: 科学出版社, 357-365.

     

    孙龙涛, 孙珍, 詹文欢等. 2010.南沙海域礼乐盆地油气资源潜力.地球科学-中国地质大学学报, 35(1):137-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201001014

     

    吴时国, 张新元. 2015.南海共轭陆缘新生代碳酸盐台地对海盆构造演化的响应.地球科学-中国地质大学学报, 40(2):234-248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201502005

     

    吴智平, 刘雨晴, 张杰等. 2018.中国南海礼乐盆地新生代断裂体系的发育与演化.地学前缘, 25(2):221-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201802024

     

    徐东海, 王利杰, 姚永坚等. 2018.礼乐盆地碳酸盐岩时空分布特征及构造意义.热带海洋学报, 37(6):49-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy201806006

     

    徐行, 姚永坚, 彭登等. 2018.南海西南次海盆的地热流特征与分析.地球物理学报, 61(7):2915-2925, doi:10.6038/cjg2018L0223. http://www.geophy.cn//CN/abstract/abstract14599.shtml

     

    张亚震, 李俊良, 裴健翔等. 2018.礼乐盆地深水区新生代生物礁的发育条件与地震特征.海洋地质与第四纪地质, 38(6):108-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201806011

     

    朱伟林, 钟锴, 李友川等. 2012.南海北部深水区油气成藏与勘探.科学通报, 57(20):1833-1841. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201220003

     

    朱伟林, 王振峰, 米立军等. 2015.南海西沙西科1井层序地层格架与礁生长单元特征.地球科学-中国地质大学学报, 40(4):677-687. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201504009

  • 加载中

(9)

(1)

计量
  • 文章访问数:  2002
  • PDF下载数:  290
  • 施引文献:  0
出版历程
收稿日期:  2019-11-20
修回日期:  2020-04-30
上线日期:  2020-08-05

目录