洋中脊扩张速率对洋壳速度结构的约束

李龑, 牛雄伟, 阮爱国, 刘绍文, Syed Waseem Haider, 卫小冬. 2020. 洋中脊扩张速率对洋壳速度结构的约束. 地球物理学报, 63(5): 1913-1926, doi: 10.6038/cjg2020N0346
引用本文: 李龑, 牛雄伟, 阮爱国, 刘绍文, Syed Waseem Haider, 卫小冬. 2020. 洋中脊扩张速率对洋壳速度结构的约束. 地球物理学报, 63(5): 1913-1926, doi: 10.6038/cjg2020N0346
LI Yan, NIU XiongWei, RUAN AiGuo, LIU ShaoWen, Syed Waseem Haider, WEI XiaoDong. 2020. On spreading rates and crustal structure at mid-ocean ridges. Chinese Journal of Geophysics (in Chinese), 63(5): 1913-1926, doi: 10.6038/cjg2020N0346
Citation: LI Yan, NIU XiongWei, RUAN AiGuo, LIU ShaoWen, Syed Waseem Haider, WEI XiaoDong. 2020. On spreading rates and crustal structure at mid-ocean ridges. Chinese Journal of Geophysics (in Chinese), 63(5): 1913-1926, doi: 10.6038/cjg2020N0346

洋中脊扩张速率对洋壳速度结构的约束

  • 基金项目:

    国家自然科学基金(41876060), 国际海域资源调查与开发"十三五"课题(DY135-S1-01-05, DY135-G2-01-01), 中国博士后科学基金(2019M652041)资助

详细信息
    作者简介:

    李龑, 男, 1989年生, 在读硕士研究生, 研究方向为海底地震深部结构探测.E-mail:liydingj@163.com

    通讯作者: 阮爱国, 男, 1963年生, 研究员, 主要从事海洋地球物理与深部构造研究.E-mail:ruanag@163.com
  • 中图分类号: P738

On spreading rates and crustal structure at mid-ocean ridges

More Information
  • 洋中脊速度结构是揭示大洋岩石圈演化过程的重要约束.为探讨不同扩张速率下洋中脊的洋壳速度结构特征,挑选了全球152处快速(全扩张速率> 90 mm·a-1)、慢速(全扩张速率20~50 mm·a-1)和超慢速(全扩张速率 < 20 mm·a-1)扩张洋中脊和非洋中脊的洋壳1-D地震波速度结构剖面,通过筛选统计、求取平均值等方法对分类的洋壳1-D速度结构进行对比研究,获得了不同扩张速率下洋中脊洋壳速度结构差异以及洋中脊与非洋中脊洋壳速度结构差异的新认识:(1)快速、慢速和超慢速扩张洋中脊的平均正常洋壳厚度分别为6.4 km、7.2 km和5.3 km,其中洋壳层2的厚度基本相似,洋壳厚度差异主要源自洋壳层3;其洋壳厚度变化范围分别为4.9~8.1 km、4.6~8.7 km和4.2~10.2 km,随着洋中脊扩张速率减小,洋壳厚度的变化范围逐渐增大;(2)快速扩张洋中脊的洋壳速度大于慢速和超慢速,可能与快速扩张脊洋壳生成过程中深部高密度岩浆上涌比较充足有关;(3)非洋中脊(>10 Ma)的洋壳比洋中脊(< 10 Ma)的洋壳厚~0.3 km,表明洋壳厚度与洋壳年龄有一定的正相关性.

  • 加载中
  • 图 1 

    地震测线分布图

    Figure 1. 

    Seismic data distribution

    图 2 

    快速扩张洋中脊的1-D速度结构

    Figure 2. 

    The 1-D velocity structure of the fast spreading ridges

    图 3 

    慢速扩张洋中脊的1-D速度结构

    Figure 3. 

    The 1-D velocity structure of the slow spreading ridges

    图 4 

    超慢速扩张洋中脊的1-D速度结构

    Figure 4. 

    The 1-D velocity structure of the ultra-slow spreading ridges

    图 5 

    快速、慢速和超慢速扩张脊平均1-D速度结构对比

    Figure 5. 

    Comparison of the average 1-D velocity structures of fast, slow and ultra-slow spreading ridges

    图 6 

    洋中脊和非洋中脊1-D速度结构对比

    Figure 6. 

    Comparison of 1-D velocity structure between mid-ocean ridges and off-axis ridges

    表 1 

    洋中脊地震测线信息统计表

    Table 1. 

    Statistics of seismic survey lines of the mid-ocean ridges

    编号 测线名称 洋壳年龄/Ma 洋壳厚度/km 经度/(°) 纬度/(°) 数据来源
    快速扩张洋中脊
    F1 ESP-1 0.2 7.86 -104.10 9.65 Vera et al. (1990)
    F2 Line 6W 0.5 6.56 - - Bratt and Solomon (1984)
    F3 Line 4 0.5 6.57 -103.80 13.00 Bratt and Purdy (1984)
    F4 Line 4S 0.5 6.60 -103.70 12.50 Lewis and Garmany (1982)
    F5 Line 5S 1.0 6.40 -104.40 12.20 Lewis and Garmany (1982)
    F6 Line 1S 1.0 6.15 -103.50 12.10 Lewis and Garmany (1982)
    F7 C22 1.0 5.56 -112.00 15.00 McClain and Atallah (1986)
    F8 gala-2 1.1 5.89 -94.30 2.70 Canales et al. (2002)
    F9 gala-3 1.2 7.47 -92.00 2.40 Canales et al. (2002)
    F10 c-26 1.5 5.48 -111.9 -17.13 Canales et al. (1998)
    F11 C21 2.0 6.58 -113.00 16.00 McClain and Atallah (1986)
    F12 66 2.0 5.60 -103.00 13.50 Lewis and Snydsman (1979)
    F13 gala-1c 2.4 5.61 -97.00 2.20 Canales et al. (2002)
    F14 mc 3.0 6.75 -127.80 48.20 Carbotte et al. (2008)
    F15 c-3 3.0 5.85 -111.65 -15.64 Canales et al. (1998)
    F16 B 3.0 8.10 -105.15 8.30 Orcutt et al. (1976)
    F17 gala-1e 4.0 5.60 -96.50 2.20 Canales et al. (2002)
    F18 OBS 1 4.0 7.38 - - Waldron et al (1990)
    F19 C 5.0 6.25 -105.05 7.50 Orcutt et al. (1976)
    F20 504B 6.0 4.92 -83.15 1.20 Collins et al (1989)
    慢速扩张洋中脊
    S1 OBH 1 0.0 7.20 -45.00 22.85 Purdy and Detrick (1986)
    S2 h-70on 0.5 8.70 -15.50 69.90 Kodaira et al. (1997)
    S3 n-1 0.8 6.66 -32.60 57.70 Navin et al. (1998)
    S4 n-2 0.8 7.49 -32.60 57.70 Navin et al. (1998)
    S5 n-3 0.8 6.97 -32.60 57.70 Navin et al. (1998)
    S6 n-4 0.8 7.41 -32.60 57.70 Navin et al. (1998)
    S7 Line E 1.0 7.37 -27.50 45.50 Fowler (1978)
    S8 Lines A&B 2.0 7.72 -33.25 36.75 Fowler (1976)
    S9 MAR 45N 3.0 6.83 -28.50 45.50 Fowler and Keen (1979)
    S10 Line F 5.0 6.25 -27.50 45.50 Fowler (1978)
    S11 10617 5.0 7.35 -30.95 40.00 Whitmarsh and Calvert (1986)
    S12 h-70off 5.9 8.79 -14.50 69.75 Kodaira et al. (1997)
    S13 OBH 1 7.0 6.06 -44.20 22.70 Detrick and Purdy (1980)
    S14 j-3 9.0 6.54 -24.50 62.00 Jacoby et al. (2007)
    S15 j-4 9.0 6.51 -24.50 62.00 Jacoby et al. (2007)
    超慢速扩张洋中脊
    U1 OBS 8 0 5.15 49.55 -37.75 Niu et al. (2015)
    U2 OBS22 0 4.85 49.92 -37.7 Niu et al. (2015)
    U3 OBS11 0 5.5 49.92 -37.77 Niu et al. (2015)
    U4 OBS26 0 10.2 51.8 -37.68 Niu et al. (2015)
    U5 Profile 10 0 3.8 2.5 72.5 Klingelhöfer et al. (2000)
    U6 OBS4 0 4.2 11 76 Kandilarov et al. (2010)
    U7 OBS8 0 4.3 11 76 Kandilarov et al. (2010)
    U8 A 0 1.90 (layer2) 9 85.2 Jokat and Schmidt-Aursch (2007)
    U9 B 0 3.20 (layer2) 10 87 Jokat and Schmidt-Aursch (2007)
    U10 Profile 9 1.5 4.2 2.5 72.5 Klingelhöfer et al. (2000)
    U11 CAM120 3 3.8 66 -27.5 Minshull et al. (2006)
    U12 CAM120 3 6.1 66 -27.75 Minshull et al. (2006)
    U13 CAM101 9.1 5.2 57.25 -33 Muller et al. (2000)
    U14 CAM101 11.2 4.20 57.25 -32.75 Muller et al. (2000)
    下载: 导出CSV

    表 2 

    非洋中脊地震测线信息统计表

    Table 2. 

    Statistics of seismic survey lines of the off-axis ridges

    编号 测线名称 洋壳年龄/Ma 洋壳厚度/km 经度/(°) 纬度/(°) 数据来源
    非洋中脊
    O1 8 13.0 6.81 -99.20 14.00 Lewis and Snydsman (1979)
    O2 C20 14.0 6.20 -118.00 -15.00 McClain and Atallah (1986)
    O3 FF2 15.0 5.83 - - Cary and Chapman (1988)
    O4 FF4 15.0 6.67 - - Spudich (1979)
    O5 l-3 16.3 5.47 2.55 37.45 Leprêtre et al. (2013)
    O6 m-1 16.4 4.35 5.65 38.00 Mihoubi et al. (2014)
    O7 h-NJ17 17.4 7.25 137.00 42.00 Hirata et al. (1992)
    O8 h-NJ23 17.4 6.45 138.00 42.50 Hirata et al. (1992)
    O9 w-E4 21.1 8.04 53.85 16.13 Watremez et al. (2011)
    O10 w-E5 21.5 8.83 53.99 16.19 Watremez et al. (2011)
    O11 w-E2 22.2 4.14 53.58 16.14 Watremez et al. (2011)
    O12 C19 29.0 6.55 -128.00 -12.00 McClain and Atallah (1986)
    O13 ws 47.2 14.70 -20.50 59.50 White and Smith (2009)
    O14 f-200 48.6 6.29 -62.15 68.90 Funck et al. (2012)
    O15 f-170 48.7 9.43 -62.75 69.05 Funck et al. (2012)
    O16 f-250 49.0 8.46 -61.00 68.60 Funck et al. (2012)
    O17 f-120 51.4 6.50 -63.95 69.35 Funck et al. (2012)
    O18 k-N 59.0 8.47 164.20 -21.84 Klingelhoefer et al. (2007)
    O19 k-S 59.0 8.23 165.70 -24.60 Klingelhoefer et al. (2007)
    O20 9809 59.0 7.70 -18.50 44.30 Whitmarsh et al. (1982)
    O21 c-OBS35 59.1 5.24 57.03 -2.00 Collier et al. (2009)
    O22 c-OBS35 60.3 5.09 56.64 -2.62 Collier et al. (2009)
    O23 c-OBS35 61.3 5.38 56.26 -3.22 Collier et al. (2009)
    O24 c1 62.2 6.94 -52.00 60.00 Chian and Louden (1994)
    O25 LL-T 68.2 6.89 80.00 -5.50 Leger and Louden (1990)
    O26 LL-R 71.5 8.59 79.50 -4.25 Leger and Louden (1990)
    O27 m-gop 72.9 10.12 64.75 19.50 Minshull et al. (2008)
    O28 g-F440 82.3 5.13 -41.42 48.60 Gerlings et al. (2011)
    O29 e-L6 94.3 4.38 -0.21 4.29 Edwards et al. (1997)
    O30 e-7-80 94.3 4.22 -0.21 4.29 Edwards et al. (1997)
    O31 e-7-90 94.3 4.92 -0.21 4.29 Edwards et al. (1997)
    O32 e-7-100 94.3 5.07 -0.21 4.29 Edwards et al. (1997)
    O33 e-7-110 94.3 3.66 -0.21 4.29 Edwards et al. (1997)
    O34 e-7-120 94.3 3.69 -0.21 4.29 Edwards et al. (1997)
    O35 e-7-140 94.3 4.06 -0.21 4.29 Edwards et al. (1997)
    O36 e-L5 95.6 5.59 -0.32 4.41 Edwards et al. (1997)
    O37 - 100.0 7.05 -21.15 33.75 White (1979)
    O38 g-F380 100.7 4.34 -42.78 48.31 Gerlings et al. (2011)
    O39 g-1 103.9 3.28 -51.00 6.50 Greenroyd et al. (2007)
    O40 g-2 103.9 3.93 -51.00 6.50 Greenroyd et al. (2007)
    O41 g-3 103.9 3.61 -51.00 6.50 Greenroyd et al. (2007)
    O42 g-4 103.9 5.12 -51.00 6.50 Greenroyd et al. (2007)
    O43 g-5 103.9 4.87 -51.00 6.50 Greenroyd et al. (2007)
    O44 bm-1 108.0 5.53 -13.75 48.80 Bullock and Minshull (2005)
    O45 bm-2 108.0 5.93 -13.75 48.80 Bullock and Minshull (2005)
    O46 bm-3 108.0 5.62 -13.75 48.80 Bullock and Minshull (2005)
    O47 bm-4 108.0 6.03 -13.75 48.80 Bullock and Minshull (2005)
    O48 bm-5 108.0 5.55 -13.75 48.80 Bullock and Minshull (2005)
    O49 bm-6 108.0 5.85 -13.75 48.80 Bullock and Minshull (2005)
    O50 bm-7 108.0 6.19 -13.75 48.80 Bullock and Minshull (2005)
    O51 bm-8 108.0 5.35 -13.75 48.80 Bullock and Minshull (2005)
    O52 g-S1 108.0 5.94 -43.09 46.04 Gerlings et al. (2011)
    O53 Line 1 110.0 7.05 - - Ginzburg et al. (1985)
    O54 l-540 115.6 4.29 -45.35 43.92 Lau et al. (2006)
    O55 l-520 117.0 4.95 -45.50 44.01 Lau et al. (2006)
    O56 c-wa-1 118.2 4.49 10.00 -7.50 Contrucci et al. (2004)
    O57 c-wa-2 118.2 5.04 10.00 -7.50 Contrucci et al. (2004)
    O58 c-wa-3 118.2 5.07 10.00 -7.50 Contrucci et al. (2004)
    O59 c-wa-4 118.2 5.78 10.00 -7.50 Contrucci et al. (2004)
    O60 c-wa-5 118.2 6.16 10.00 -7.50 Contrucci et al. (2004)
    O61 c-wa-6 118.2 6.61 10.00 -7.50 Contrucci et al. (2004)
    O62 c-wa-7 118.2 7.09 10.00 -7.50 Contrucci et al. (2004)
    O63 c-wa-8 118.2 7.12 10.00 -7.50 Contrucci et al. (2004)
    O64 c-wa-9 118.2 7.18 10.00 -7.50 Contrucci et al. (2004)
    O65 l-500 118.4 5.91 -45.65 44.09 Lau et al. (2006)
    O66 g-S3 120.1 6.14 -45.85 44.25 Gerlings et al. (2011)
    O67 d-OBS1 120.9 6.82 -13.45 40.49 Dean et al. (2000)
    O68 d-OBS2 120.9 6.54 -13.45 40.49 Dean et al. (2000)
    O69 Line 4W 124.0 5.74 - - Whitmarsh et al. (1990)
    O70 w-8 124.1 6.96 -13.25 42.00 Whitmarsh et al. (1996)
    O71 ESP 5 125.0 7.92 - - Cary and Chapman (1988)
    O72 Line 3 127.0 6.81 - - Whitmarsh et al. (1990)
    O73 a-OBS6 128.5 3.78 -11.24 38.13 Afilhado et al. (2008)
    O74 a-OBS5 129.8 6.54 -10.86 38.10 Afilhado et al. (2008)
    O75 ESP 7In 142.0 7.80 -68.14 31.31 Minshull et al. (1991)
    O76 ESP 7Out 142.0 8.40 -68.12 31.33 Minshull et al. (1991)
    O77 ESP 8In 142.0 7.53 -68.30 31.28 Minshull et al. (1991)
    O78 ESP 8Out 142.0 8.03 -68.32 31.30 Minshull et al. (1991)
    O79 ESP 1In 143.0 7.35 -68.18 31.46 Minshull et al. (1991)
    O80 ESP 1Out 143.0 6.90 -68.16 31.44 Minshull et al. (1991)
    O81 ESP 2In 143.0 7.30 -68.20 31.20 Minshull et al. (1991)
    O82 ESP 2Out 143.0 7.30 -68.18 31.18 Minshull et al. (1991)
    O83 ESP 3In 143.0 7.70 -68.28 31.17 Minshull et al. (1991)
    O84 ESP 3Out 143.0 7.95 -68.26 31.15 Minshull et al. (1991)
    O85 ESP 13 143.0 7.10 -68.25 31.25 Minshull et al. (1991)
    O86 ESP 4In 143.0 7.38 -68.24 31.24 Minshull et al. (1991)
    O87 ESP 4Out 143.0 7.05 -68.22 31.26 Minshull et al. (1991)
    O88 1-500 143.8 5.25 40.65 -20.25 Leinweber et al. (2013)
    O89 ESP 15 144.0 8.04 -70.00 27.60 Morris et al. (1992)
    O90 - 144.0 7.45 -68.15 31.30 Purdy (1983)
    O91 ESP 16 146.0 6.96 -68.90 27.50 Morris et al. (1992)
    O92 1-400 147.9 6.37 40.30 -19.45 Leinweber et al. (2013)
    O93 ESP 17 150.0 8.04 -71.10 27.75 Morris et al. (1992)
    O94 2-360 152.0 6.53 39.10 -19.40 Leinweber et al. (2013)
    O95 ESP 18 152.0 7.19 -71.50 28.30 Morris et al. (1993)
    O96 1-300 152.3 7.04 39.85 -18.60 Leinweber et al. (2013)
    O97 2-285 154.8 8.39 38.80 -18.75 Leinweber et al. (2013)
    O98 1-200 156.7 7.29 39.45 -17.75 Leinweber et al. (2013)
    O99 2-210 157.2 8.41 38.50 -18.20 Leinweber et al. (2013)
    O100 ESP 2 160.0 8.44 -68.80 26.85 Morris et al. (1993)
    O101 c-475 165.1 5.51 -87.30 25.95 Christeson et al. (2014)
    O102 c-387.5 167.9 5.81 -86.70 26.50 Christeson et al. (2014)
    O103 ESP 4 170.0 8.57 -70.30 27.15 Morris et al. (1993)
    下载: 导出CSV
  •  

    Afilhado A, Matias L, Shiobara H, et al. 2008. From unthinned continent to ocean:The deep structure of the West Iberia passive continental margin at 38°N. Tectonophysics, 458(1-4):9-50. doi: 10.1016/j.tecto.2008.03.002

     

    Bratt S R, Purdy G M. 1984. Structure and variability of oceanic crust on the flanks of the east pacific rise between 11°N and 13°N. Journal of Geophysical Research:Solid Earth, 89(B7):6111-6125. doi: 10.1029/JB089iB07p06111

     

    Bratt S R, Solomon S C. 1984. Compressional and shear wave structure of the east pacific rise at 11°20'N:constraints from three-component ocean bottom seismometer data. Journal of Geophysical Research:Solid Earth, 89(B7):6095-6110. doi: 10.1029/JB089iB07p06095

     

    Bullock A D, Minshull T A. 2005. From continental extension to seafloor spreading:crustal structure of the Goban Spur rifted margin, southwest of the UK. Geophysical Journal of the Royal Astronomical Society, 163(2):527-546. doi: 10.1111/j.1365-246X.2005.02726.x

     

    Canales J P, Detrick R S, Bazin S, et al. 1998. Off-axis crustal thickness across and along the East Pacific Rise within the MELT area. Science, 280(5367):1218-1221. doi: 10.1126/science.280.5367.1218

     

    Canales J P, Ito G, Detrick R S, et al. 2002. Crustal thickness along the western Galápagos Spreading Center and the compensation of the Galápagos swell. Earth and Planetary Science Letters, 203(1):311-327. doi: 10.1016/S0012-821X(02)00843-9

     

    Carbotte S, Mutter C, Mutter J, et al. 1998. Influence of magma supply and spreading rate on crustal magma bodies and emplacement of the extrusive layer:insights from the East Pacific rise at lat 16°N. Geology, 26(5):455-458. doi: 10.1130/0091-7613(1998)026<0455:IOMSAS>2.3.CO;2

     

    Carbotte S M, Nedimović M R, Canales J P, et al. 2008. Variable crustal structure along the Juan de Fuca Ridge:Influence of on-axis hot spots and absolute plate motions. Geochemistry, Geophysics, Geosystems, 9(8):Q08001, doi:10.1029/2007GC001922.

     

    Cary P W, Chapman C H. 1988. Waveform inversion of expanding spread profile 5 from the North Atlantic transect. Journal of Geophysical Research:Solid Earth, 93(B11):13575-13588. doi: 10.1029/JB093iB11p13575

     

    Chen Y J. 1992. Oceanic crustal thickness versus spreading rate. Geophysical Research Letters, 19(8):753-756. doi: 10.1029/92GL00161

     

    Chen Y S, Morgan W J. 1990. Rift valley/no rift valley transition at mid-ocean ridges. Journal of Geophysical Research:Solid Earth, 95(B11):17571-17581. doi: 10.1029/JB095iB11p17571

     

    Chian D, Louden K E. 1994. The continent-ocean crustal transition across the southwest Greenland margin. Journal of Geophysical Research:Solid Earth, 99(B5):9117-9135. doi: 10.1029/93JB03404

     

    Christeson G L, Van Avendonk H J A, Norton I O, et al. 2014. Deep crustal structure in the eastern gulf of Mexico. Journal of Geophysical Research:Solid Earth, 119(9):6782-6801. doi: 10.1002/2014JB011045

     

    Collier J S, Minshull T A, Hammond J O S, et al. 2009. Factors influencing magmatism during continental breakup:New insights from a wide-angle seismic experiment across the conjugate Seychelles-Indian margins. Journal of Geophysical Research:Solid Earth, 114(B3):B03101, doi:10.1029/2008JB005898.

     

    Collins J A, Purdy M G, Brocher T M. 1989. Seismic velocity structure at Deep Sea Drilling Project site 504B, Panama Basin:Evidence for thin oceanic crust. Journal of Geophysical Research:Solid Earth, 94(B7):9283-9302. doi: 10.1029/JB094iB07p09283

     

    Contrucci I, Matias L, Moulin M, et al. 2004. Deep structure of the West African continental margin (Congo, Zaïre, Angola), between 5°S and 8°S, from reflection/refraction seismics and gravity data. Geophysical Journal International, 158(2):529-553. doi: 10.1111/j.1365-246X.2004.02303.x

     

    Dean S M, Minshull T A, Whitmarsh R B, et al. 2000. Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles:The IAM-9 transect at 40°20'N. Journal of Geophysical Research:Solid Earth, 105(B3):5859-5885. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1999JB900301

     

    Detrick R S Jr, Purdy G M. 1980. The crustal structure of the Kane fracture zone from seismic refraction studies. Journal of Geophysical Research:Solid Earth, 85(B7):3759-3777. doi: 10.1029/JB085iB07p03759

     

    Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965):405-412. doi: 10.1038/nature02128

     

    Dungan M A, Rhodes J M. 1978. Residual glasses and melt inclusions in basalts from DSDP legs 45 and 46:evidence for magma mixing. Contributions to Mineralogy and Petrology, 67(4):417-431. doi: 10.1007/BF00383301

     

    Dunn R A, Forsyth D W. 2003. Imaging the transition between the region of mantle melt generation and the crustal magma chamber beneath the southern east pacific rise with short-period love waves. Journal of Geophysical Research:Solid Earth, 108(B7):2352, doi:10.1029/2002JB002217.

     

    Edwards R A, Whitmarsh R B, Scrutton R A. 1997. The crustal structure across the transform continental margin off Ghana, eastern equatorial Atlantic. Journal of Geophysical Research:Solid Earth, 102(B1):747-772. doi: 10.1029/96JB02098

     

    Falloon T J, Danyushevsky L V, Ariskin A, et al. 2007. The application of olivine geothermometry to infer crystallization temperatures of parental liquids:implications for the temperature of MORB magmas. Chemical Geology, 241(3-4):207-233. doi: 10.1016/j.chemgeo.2007.01.015

     

    Fowler C M R. 1976. Crustal structure of the Mid-Atlantic ridge crest at 37°N. Geophysical Journal International, 47(3):459-491. doi: 10.1111/j.1365-246X.1976.tb07097.x

     

    Fowler C M R. 1978. The mid-Atlantic ridge:structure at 45°N. Geophysical Journal International, 54(1):167-183. doi: 10.1111/j.1365-246X.1978.tb06762.x

     

    Fowler C M R, Keen C E. 1979. Oceanic crustal structure-Mid-Atlantic Ridge at 45°N. Geophysical Journal of the Royal Astronomical Society, 56(1):219-226. doi: 10.1111/j.1365-246X.1979.tb04777.x

     

    Funck T, Gohl K, Damm V, et al. 2012. Tectonic evolution of southern Baffin Bay and Davis Strait:Results from a seismic refraction transect between Canada and Greenland. Journal of Geophysical Research:Solid Earth, 117(B4):B04107, doi:10.1029/2011JB009110.

     

    Gerlings J, Louden K E, Jackson H R. 2011. Crustal structure of the Flemish cap continental margin (eastern Canada):an analysis of a seismic refraction profile. Geophysical Journal International, 185(1):30-48. doi: 10.1111/j.1365-246X.2011.04931.x

     

    Ginzburg A, Whitmarsh R B, Roberts D G, et al. 1985. The deep seismic structure of the northern continental margin of the Bay of Biscay. Annales Geophysicae, 3(4):499-510. http://cn.bing.com/academic/profile?id=05878b58cede6828b92c5eb3aaf08690&encoded=0&v=paper_preview&mkt=zh-cn

     

    Goslin J, Beuzart P, Francheteau J, et al. 1972. Thickening of the oceanic layer in the Pacific Ocean. Marine Geophysical Researches, 1(4):418-427. doi: 10.1007/BF00286743

     

    Greenroyd C J, Peirce C, Rodger M, et al. 2007. Crustal structure of the French Guiana margin, West Equatorial Atlantic. Geophysical Journal of the Royal Astronomical Society, 169(3):964-987. doi: 10.1111/j.1365-246X.2007.03372.x

     

    Herzberg C, Asimow P D, Arndt N, et al. 2007. Temperatures in ambient mantle and plumes:constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems, 8(2):Q02006, doi:10.1029/2006GC001390.

     

    Hirata N, Karp B Y, Yamaguchi T, et al. 1992. Oceanic crust in the Japan Basin of the Japan Sea by the 1990 Japan-USSR expedition. Geophysical Research Letters, 19(20):2027-2030. doi: 10.1029/92GL02094

     

    Jacoby W R, Weigel W, Fedorova T. 2007. Crustal structure of the Reykjanes ridge near 62°N, on the basis of seismic refraction and gravity data. Journal of Geodynamics, 43(1):55-72. doi: 10.1016/j.jog.2006.10.002

     

    Jokat W, Schmidt-Aursch M C. 2007. Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean. Geophysical Journal of the Royal Astronomical Society, 168(3):983-998. doi: 10.1111/j.1365-246X.2006.03278.x

     

    Kandilarov A, Landa H, Mjelde R, et al. 2010. Crustal structure of the ultra-slow spreading Knipovich ridge, north Atlantic, along a presumed ridge segment center. Marine Geophysical Researches, 31(3):173-195. doi: 10.1007/s11001-010-9095-8

     

    Klein E M, Langmuir C H. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research:Solid Earth, 92(B8):8089-8115. doi: 10.1029/JB092iB08p08089

     

    Klingelhoefer F, Lafoy Y, Collot J, et al. 2007. Crustal structure of the basin and ridge system west of New Caledonia (southwest Pacific) from wide-angle and reflection seismic data. Journal of Geophysical Research:Solid Earth, 112(B11):B11102, doi:10.1029/2007JB005093.

     

    Klingelhöfer F, Géli L, Matias L, et al. 2000. Crustal structure of a super-slow spreading centre:a seismic refraction study of Mohns Ridge, 72°N. Geophysical Journal International, 141(2):509-526. doi: 10.1046/j.1365-246x.2000.00098.x

     

    Kodaira S, Mjelde R, Gunnarsson K, et al. 1997. Crustal structure of the Kolbeinsey Ridge, North Atlantic, obtained by use of ocean bottom seismographs. Journal of Geophysical Research:Solid Earth, 102(B2):3131-3151. doi: 10.1029/96JB03487

     

    Kress V C, Ghiorso M S. 2004. Thermodynamic modeling of post-entrapment crystallization in igneous phases. Journal of Volcanology and Geothermal Research, 137(4):247-260. doi: 10.1016/j.jvolgeores.2004.05.012

     

    Langmuir C, Forsyth D. 2007. Mantle melting beneath mid-ocean ridges. Oceanography, 20(1):78-89. doi: 10.5670/oceanog.2007.82

     

    Langmuir C H, Klein E M, Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges.//Morgan J P, Blackman D K, Sinton J M eds. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington, D.C.: Geophysical Monograph Series, 71: 183-210.

     

    Lau K W H, Louden K E, Funck T, et al. 2006. Crustal structure across the Grand Banks-Newfoundland Basin Continental Margin-I. Results from a seismic refraction profile. Geophysical Journal International, 167(1):127-156. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.2006.02988.x

     

    Leger G T, Louden K E. 1990. Seismic refraction measurements in the Central Indian Basin: Evidence for crustal thickening related to intraplate deformation.//Cochran I R, Stow D A V eds. Proceedings of the Ocean Drilling Program, Scientific Results, 116: 291-309.

     

    Leinweber V T, Klingelhoefer F, Neben S, et al. 2013. The crustal structure of the Central Mozambique continental margin-Wide-angle seismic, gravity and magnetic study in the Mozambique Channel, Eastern Africa. Tectonophysics, 599:170-196. doi: 10.1016/j.tecto.2013.04.015

     

    Leprêtre A, Klingelhoefer F, Graindorge D, et al. 2013. Multiphased tectonic evolution of the Central Algerian margin from combined wide-angle and reflection seismic data off Tipaza, Algeria. Journal of Geophysical Research:Solid Earth, 118(8):3899-3916. doi: 10.1002/jgrb.50318

     

    Lewis B T R, Snydsman W E. 1979. Fine structure of the lower oceanic crust on the Cocos Plate. Tectonophysics, 1979, 55(1-2):87-105. doi: 10.1016/0040-1951(79)90336-6

     

    Lewis B T R, Garmany J D. 1982. Constraints on the structure of the East Pacific Rise from seismic refraction data. Journal of Geophysical Research:Solid Earth, 87(B10):8417-8425. doi: 10.1029/JB087iB10p08417

     

    Li J B, Jian H C, Chen Y J, et al. 2015. Seismic observation of an extremely magmatic accretion at the ultraslow spreading southwest Indian ridge. Geophysical Research Letters, 42(8):2656-2663. doi: 10.1002/2014GL062521

     

    Li J H, Liu C H, Han X Q. 2019. Tectonic characteristics and kinematic significance for the global mid-ocean ridge system. Earth Science Frontiers (in Chinese), 26(3):154-162. http://d.old.wanfangdata.com.cn/Periodical/dxqy201903019

     

    Li S Z, Suo Y H, Yu S, et al. 2015. Morphotectonics and tectonic processes of the Southwest Indian Ocean. Geotectonica et Metallogenia (in Chinese), 39(1):15-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201501002

     

    Lin J, Morgan J P. 1992. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophysical Research Letters, 19(1):13-16. doi: 10.1029/91GL03041

     

    Lissenberg C J, Dick H J B. 2008. Melt-rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth and Planetary Science Letters, 271(1-4):311-325. doi: 10.1016/j.epsl.2008.04.023

     

    Macdonald C K. 1982. Mid-ocean ridges:fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annual Review of Earth and Planetary Sciences, 10:155-190. doi: 10.1146/annurev.ea.10.050182.001103

     

    Macdonald K C, Fox P J, Perram L J, et al. 1988. A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities. Nature, 335(6187):217-225. doi: 10.1038/335217a0

     

    Macdonald K C, Scheirer D S, Carbotte S M. 1991. Mid-ocean ridges:discontinuities, segments and giant cracks. Science, 253(5023):986-994. doi: 10.1126/science.253.5023.986

     

    Magde L S, Sparks D W, Detrick R S. 1997. The relationship between buoyant mantle flow, melt migration, and gravity bull's eyes at the mid-Atlantic ridge between 33°N and 35°N. Earth and Planetary Science Letters, 148(1-2):59-67. doi: 10.1016/S0012-821X(97)00039-3

     

    McClain J S, Atallah C A. 1986. Thickening of the oceanic crust with age. Geology, 14(7):574-576. doi: 10.1130/0091-7613(1986)14<574:TOTOCW>2.0.CO;2

     

    Michael P J, Chase R L. 1987. The influence of primary magma composition, H2O and pressure on mid-ocean ridge basalt differentiation. Contributions to Mineralogy and Petrology, 96(2):245-263. doi: 10.1007/BF00375237

     

    Mihoubi A, Schnürle P, Benaissa Z, et al. 2014. Seismic imaging of the eastern Algerian margin off Jijel:Integrating wide-angle seismic modelling and multichannel seismic pre-stack depth migration. Geophysical Journal International, 198(3):1486-1503. doi: 10.1093/gji/ggu179

     

    Minshull T A, White R S, Mutter J C, et al. 1991. Crustal structure at the Blake Spur Fracture Zone from expanding spread profiles. Journal of Geophysical Research:Solid Earth, 96(B6):9955-9984. http://cn.bing.com/academic/profile?id=284f9af7a167a82c3ffeaa476bd191af&encoded=0&v=paper_preview&mkt=zh-cn

     

    Minshull T A, Muller M R, White R S. 2006. Crustal structure of the southwest Indian ridge at 66°E:seismic constraints. Geophysical Journal International, 166(1):135-147. doi: 10.1111/j.1365-246X.2006.03001.x

     

    Minshull T A, Lane C I, Collier J S, et al. 2008. The relationship between rifting and magmatism in the northeastern Arabian Sea. Nature Geoscience, 1(7):463-467. doi: 10.1038/ngeo228

     

    Morgan J P, Parmentier E M, Lin J. 1987. Mechanisms for the origin of mid-ocean ridge axial topography:implications for the thermal and mechanical structure of accreting plate boundaries. Journal of Geophysical Research:Solid Earth, 92(B12):12823-12836. doi: 10.1029/JB092iB12p12823

     

    Morgan J P, Chen Y J. 1993. The genesis of oceanic crust:magma injection, hydrothermal circulation, and crustal flow. Journal of Geophysical Research:Solid Earth, 98(B4):6283-6297. doi: 10.1029/92JB02650

     

    Morgan W J. 1972. Plate motions and deep mantle convection. Geological Society of America Memoirs, 132:7-22. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210561563/

     

    Morris E, Detrick R S, Minshull T A, et al. 1993. Seismic structure of oceanic crust in the western North Atlantic. Journal of Geophysical Research:Solid Earth, 98(B8):13879-13903. doi: 10.1029/93JB00557

     

    Muller M R, Minshull T A, White R S. 2000. Crustal structure of the Southwest Indian Ridge at the Atlantis Ⅱ Fracture Zone. Journal of Geophysical Research:Solid Earth, 105(B11):25809-25828. doi: 10.1029/2000JB900262

     

    Navin D A, Peirce C, Sinha M C. 1998. The RAMESSES experiment-Ⅱ. Evidence for accumulated melt beneath a slow spreading ridge from wide-angle refraction and multichannel reflection seismic profiles. Geophysical Journal International, 135(3):746-772. doi: 10.1046/j.1365-246X.1998.00709.x

     

    Niu X W, Ruan A G, Li J B, et al. 2015. Along-axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide-angle seismic experiment. Geochemistry, Geophysics, Geosystems, 16(2):468-485. doi: 10.1002/2014GC005645

     

    Niu X W, Li J B, Ruan A G, et al. 2015. Evidence of serpentinized mantle beneath a non-transform discontinuity at an ultra-slow spreading ridge from wide-angle ocean bottom seismometer data. Chinese Science Bulletin (in Chinese), 60(10):952-961. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201510009

     

    Niu Y L, Batiza R. 1991. In situ densities of MORB melts and residual mantle:implications for buoyancy forces beneath mid-ocean ridges. The Journal of Geology, 99(5):767-775. doi: 10.1086/629538

     

    Niu Y L, Hékinian R. 1997. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature, 385(6614):326-329. doi: 10.1038/385326a0

     

    Orcutt J A, Kennett B L N, Dorman L R M. 1976. Structure of the East Pacific rise from an ocean bottom seismometer survey. Geophysical Journal International, 45(2):305-320. doi: 10.1111/j.1365-246X.1976.tb00328.x

     

    Purdy G M. 1983. The seismic structure of 140 Myr old crust in the western central Atlantic Ocean. Geophysical Journal of the Royal Astronomical Society, 72(1):115-137. doi: 10.1111/j.1365-246X.1983.tb02808.x

     

    Purdy G M, Detrick R S. 1986. Crustal structure of the Mid-Atlantic Ridge at 23°N from seismic refraction studies. Journal of Geophysical Research:Solid Earth, 91(B3):3739-3762. doi: 10.1029/JB091iB03p03739

     

    Rabinowicz M, Rouzo S, Sempere J C, et al. 1993. Three-dimensional mantle flow beneath mid-ocean ridges. Journal of Geophysical Research:Solid Earth, 98(B5):7851-7869. doi: 10.1029/92JB02740

     

    Reid I, Jackson H R. 1981. Oceanic spreading rate and crustal thickness. Marine Geophysical Researches, 5(2):165-172. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027030416/

     

    Sempere J C, Macdonald K C. 1987. Marine tectonics:processes at mid-ocean ridges. Reviews of Geophysics, 25(6):1313-1347. doi: 10.1029/RG025i006p01313

     

    Sinton J M, Detrick R S. 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research:Solid Earth, 97(B1):197-216. doi: 10.1029/91JB02508

     

    Smewing J D. 1981. Mixing characteristics and compositional differences in mantle-derived melts beneath spreading axes:evidence from cyclically layered rocks in the ophiolite of north Oman. Journal of Geophysical Research:Solid Earth, 86(B4):2645-2659. doi: 10.1029/JB086iB04p02645

     

    Sparks D W, Parmentier E M, Morgan J P. 1993. Three-dimensional mantle convection beneath a segmented spreading center:implications for along-axis variations in crustal thickness and gravity. Journal of Geophysical Research:Solid Earth, 98(B12):21977-21995. doi: 10.1029/93JB02397

     

    Spudich P A. 1979. Oceanic crustal studies using waveform analysis and shear waves[Ph. D. thesis]. California: University of California, San Diego.

     

    Spudich P, Orcutt J. 1980. A new look at the seismic velocity structure of the oceanic crust. Reviews of Geophysics, 18(3):627-645. doi: 10.1029/RG018i003p00627

     

    Vera E E, Mutter J C, Buhl P, et al. 1990. The structure of 0-to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles. Journal of Geophysical Research:Solid Earth, 95(B10):15529-15556. doi: 10.1029/JB095iB10p15529

     

    Waldron D A, Clowes R M, White D J. 1990. Seismic structure of a subducting oceanic plate off western Canada.//Green A G ed. Studies of Laterally Heterogeneous Structures Using Seismic Refraction and Reflection Data. Geological Survey of Canada, 105-113.

     

    Wang W, Niu X W, Ruan A G, et al. 2018. Off-axis crustal structure at the Southwest Indian Ridge (49.5°E). Chinese Journal of Geophysics (in Chinese), 61(11):4406-4417, doi:10.6038/cjg2018L0742.

     

    Watremez L, Leroy S, Rouzo S, et al. 2011. The crustal structure of the north-eastern Gulf of Aden continental margin:insights from wide-angle seismic data. Geophysical Journal International, 184(2):575-594. doi: 10.1111/j.1365-246X.2010.04881.x

     

    Wessel P, Smith W H F. 1995. New version of the generic mapping tools. Eos, 76(33):329. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-95EO00198/

     

    White R S. 1979. Oceanic upper crustal structure from variable angle seismic reflection-refraction profiles. Geophysical Journal of the Royal Astronomical Society, 57(3):683-726. doi: 10.1111/j.1365-246X.1979.tb06785.x

     

    White R S, McKenzie D, O'Nions R K. 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research:Solid Earth, 97(B13):19683-19715. doi: 10.1029/92JB01749

     

    White R S, Smith L K. 2009. Crustal structure of the Hatton and the conjugate east Greenland rifted volcanic continental margins, NE Atlantic. Journal of Geophysical Research:Solid Earth, 114(B2):B02305, doi:10.1029/2008JB005856.

     

    Whitehead J A Jr, Dick H J B, Schouten H. 1984. A mechanism for magmatic accretion under spreading centres. Nature, 312(5990):146-148. doi: 10.1038/312146a0

     

    Whitmarsh R B, Ginzburg A, Searle R C. 1982. The structure andorigin of the Azores-Biscay Rise, North-East Atlantic Ocean. Geophysical Journal of the Royal Astronomical Society, 70(1):79-107. doi: 10.1111/j.1365-246X.1982.tb06393.x

     

    Whitmarsh R B, Calvert A J. 1986. Crustal structure of Atlantic fracture zones-I. the Charlie-Gibbs fracture zone. Geophysical Journal International, 85(1):107-138. doi: 10.1111/j.1365-246X.1986.tb05174.x

     

    Whitmarsh R B, Miles P R, Mauffret A. 1990. The ocean-continent boundary off the western continental margin of Iberia-I. crustal structure at 40°30'N. Geophysical Journal International, 103(2):509-531. doi: 10.1111/j.1365-246X.1990.tb01788.x

     

    Whitmarsh R B, White R S, Horsefield S J, et al. 1996. The ocean-continent boundary off the western continental margin of Iberia:Crustal structure west of Galicia Bank. Journal of Geophysical Research:Solid Earth, 101(B12):28291-28314. doi: 10.1029/96JB02579

     

    Woollard G P. 1975. The interrelationships of crustal and upper mantle parameter values in the Pacific. Reviews of Geophysics, 13(1):87-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/RG013i001p00087

     

    Zhao M H, Qiu X L, Li J B, et al. 2010. Research development and prospect on three-dimensional seismic structures of slow and ultraslow spreading ocean ridges. Journal of Tropical Oceanography (in Chinese), 29(6):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy201006001

     

    Zhao M H, Qiu X L, Li J B, et al. 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39'E). Geochemistry, Geophysics, Geosystems, 14(10):4544-4563. https://www.researchgate.net/publication/256989211_Three-dimensional_seismic_structure_of_the_Dragon_Flag_oceanic_core_complex_at_the_ultraslow_spreading_Southwest_Indian_Ridge_4939'E

     

    李江海, 刘持恒, 韩喜球. 2019.全球洋中脊系统的构造特征及其运动学意义.地学前缘, 26(3):154-162. http://d.old.wanfangdata.com.cn/Periodical/dxqy201903019

     

    李三忠, 索艳慧, 余珊等. 2015.西南印度洋构造地貌与构造过程.大地构造与成矿学, 39(1):15-29. doi: 10.3969/j.issn.1001-1552.2015.01.002

     

    牛雄伟, 李家彪, 阮爱国等. 2015.超慢速扩张洋中脊NTD的蛇纹石化地幔:海底广角地震探测.科学通报, 60(10):952-961. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201510011.htm

     

    王伟, 牛雄伟, 阮爱国等. 2018.西南印度洋中脊49.5°E离轴地壳结构.地球物理学报, 61(11):4406-4417, doi:10.6038/cjg2018L0742. http://www.geophy.cn//CN/abstract/abstract14750.shtml

     

    赵明辉, 丘学林, 李家彪等. 2010.慢速、超慢速扩张洋中脊三维地震结构研究进展与展望.热带海洋学报, 29(6):1-7. doi: 10.3969/j.issn.1009-5470.2010.06.001

  • 加载中

(6)

(2)

计量
  • 文章访问数:  2938
  • PDF下载数:  524
  • 施引文献:  0
出版历程
收稿日期:  2019-11-20
修回日期:  2019-12-24
上线日期:  2020-05-05

目录