远震接收函数确定的鄂尔多斯西部及邻区Moho面性质和构造意义

黄柳婷, 沈旭章, 郑文俊, 钱银苹, 张冬丽, 王文天, 李小林. 2020. 远震接收函数确定的鄂尔多斯西部及邻区Moho面性质和构造意义. 地球物理学报, 63(3): 871-885, doi: 10.6038/cjg2020N0210
引用本文: 黄柳婷, 沈旭章, 郑文俊, 钱银苹, 张冬丽, 王文天, 李小林. 2020. 远震接收函数确定的鄂尔多斯西部及邻区Moho面性质和构造意义. 地球物理学报, 63(3): 871-885, doi: 10.6038/cjg2020N0210
HUANG LiuTing, SHEN XuZhang, ZHENG WenJun, QIAN YinPing, ZHANG DongLi, WANG WenTian, LI XiaoLin. 2020. Moho properties of western Ordos block and surrounding regions constrained by teleseismic receiver functions and its tectonic implication. Chinese Journal of Geophysics (in Chinese), 63(3): 871-885, doi: 10.6038/cjg2020N0210
Citation: HUANG LiuTing, SHEN XuZhang, ZHENG WenJun, QIAN YinPing, ZHANG DongLi, WANG WenTian, LI XiaoLin. 2020. Moho properties of western Ordos block and surrounding regions constrained by teleseismic receiver functions and its tectonic implication. Chinese Journal of Geophysics (in Chinese), 63(3): 871-885, doi: 10.6038/cjg2020N0210

远震接收函数确定的鄂尔多斯西部及邻区Moho面性质和构造意义

  • 基金项目:

    国家重点研发计划(2017YFC1500103)、国家自然科学基金项目(41874052,41590861,41574077,41704057)和广东省引进人才创新创业团队项目(2016ZT06N331)联合资助

详细信息
    作者简介:

    黄柳婷, 女, 壮族, 1995年生, 中山大学硕士在读, 主要从事接收函数及地壳结构方面的研究.E-mail:huanglt23@mail2.sysu.edu.cn

    通讯作者: 沈旭章, 男, 博士, 教授, 主要从事地球深部结构、地震学和定点形变观测方面的研究.E-mail:shenxzh5@mail.sysu.edu.cn
  • 中图分类号: P313;P315

Moho properties of western Ordos block and surrounding regions constrained by teleseismic receiver functions and its tectonic implication

More Information
  • 基于呈南北向线性分布且穿过鄂尔多斯地块的129个流动台站远震记录,获取了20267条远震P波接收函数.通过叠加转换点相同的接收函数,提取了可靠的P-S一次转换波和多次波到时,进而确定了南北向横跨鄂尔多斯地块剖面的地壳厚度与波速比分布.同时,利用单台速度-密度跃变(δβρ)扫描叠加方法确定了Moho面速度和密度跃变.结果显示:秦岭—渭河盆地下方具有较薄地壳、低波速比(1.66~1.72)以及相对较小的密度跃变(4%~10%),表明该区域地壳主要以长英质酸性岩石为主,引起该现象的主要原因可能是下地壳拆沉;鄂尔多斯南部地壳较厚(41.4±1.3 km)、波速比较高、速度跃变相对较小(14%~23%),主要原因可能由青藏高原的挤压增厚导致;鄂尔多斯北部波速比较高(>1.87)、速度跃变较大(19%~29%)、密度跃变较小,推测鄂尔多斯北部下地壳发生部分熔融,较大波速比可能是部分熔融与沉积层共同导致的结果.

  • 加载中
  • 图 1 

    研究区构造背景与台站分布

    Figure 1. 

    The tectonic background of the study area and the distribution of seismic station The black triangles represent stations; The red crosses represent the piercing points of PMs; The black lines represent faults.

    图 2 

    地震事件震中分布图

    Figure 2. 

    Epicenters distribution of earthquake events

    图 3 

    台站61035下方的接收函数

    Figure 3. 

    Receiver functions from the station 61035

    图 4 

    部分台站下方接收函数叠加结果

    Figure 4. 

    Receiver functions stacks from some stations

    图 5 

    接收函数根据透射转换点叠加的剖面

    Figure 5. 

    Stacking profile of receiving functions based on the location of piercing points The black symbols in the figure are arrival time and error bar. (a) Topography; (b) Stacking profile of receiving functions after Ps phase correction; (c) Stacking profile of receiving functions after PPs phase correction.

    图 6 

    部分台站下方速度和密度跃变扫描结果

    Figure 6. 

    Grid searching results of S-wave velocity and density contrasts of some stations

    图 7 

    根据接收函数得到的地壳厚度与波速比

    Figure 7. 

    Crustal thickness and velocity ratio from receiver functions

    图 8 

    研究区的(a)速度跃变与(b)密度跃变结果

    Figure 8. 

    (a) S-wave velocity contrasts and (b) density contrasts in the study

    图 9 

    速度与密度跃变关系图

    Figure 9. 

    Relationship between S-wave velocity and density contrasts

    图 10 

    不同模型下的接收函数和速度密度跃变

    Figure 10. 

    Synthetic receiver functions, S-wave velocity and density contrasts of different models

    表 1 

    台站下方速度及密度跃变结果

    Table 1. 

    S-wave velocity and density contrast of stations

    台站名 经度
    (°)
    纬度
    (°)
    Moho深度
    (km)
    速度
    跃变
    (%)
    密度
    跃变
    (%)
    阴山造山带
    15677 42.01 107.44 40.4 25 7
    15680 41.27 107.42 43.6 26 4
    15682 41.42 108.44 43.2 30 3
    15683 42.27 107.57 40.5 32 6
    15686 41.83 107.75 42.2 18 2
    15689 42.33 108.12 40.5 21 10
    15692 41.72 108.21 42.7 29 8
    15698 41.49 108.83 43.6 28 6
    鄂尔多斯北部
    15678 40.41 107.40 38.2 26 5
    15702 40.12 107.51 37.0 21 7
    15703 40.01 107.85 37.6 27 6
    15704 39.95 108.23 37.6 22 15
    15705 39.93 108.61 38.3 29 13
    15708 39.74 107.90 39.1 25 10
    15709 39.71 108.36 39.1 19 13
    15710 39.72 108.67 39.1 20 9
    15711 39.46 107.09 39.1 26 3
    15712 39.47 107.44 39.1 24 9
    15713 39.47 107.83 39.1 34 3
    15714 39.49 108.26 39.1 25 6
    15715 39.43 108.69 38.9 22 12
    15719 39.18 108.25 38.4 25 7
    15720 39.18 108.66 38.4 21 16
    15724 38.91 108.25 37.9 25 7
    15725 38.92 108.66 37.9 20 17
    15730 38.01 108.32 36.6 25 12
    15732 38.00 108.68 36.6 20 19
    15738 38.36 108.68 36.0 21 15
    15739 38.63 108.78 37.3 22 18
    扬子板块
    51515 32.33 107.60 43.9 17 5
    61001 32.33 107.99 43.9 18 17
    61009 32.84 107.21 36.7 15 4
    61014 33.03 107.45 37.5 15 9
    秦岭—渭河盆地
    61022 33.37 107.62 43.9 19 7
    61024 33.44 107.98 43.9 19 4
    61029 33.57 107.55 44.7 17 10
    61031 33.70 107.94 42.0 19 2
    61035 33.87 107.11 41.0 23 5
    61042 34.28 107.42 41.8 22 7
    61044 34.35 107.06 34.9 20 4
    61045 34.50 107.66 35.9 17 7
    鄂尔多斯南部
    61055 34.82 108.03 39.5 17 14
    61057 34.92 107.78 39.6 19 9
    61060 35.17 107.77 41.6 16 12
    61061 36.53 108.77 42.9 23 7
    62365 35.41 107.82 41.5 17 13
    62377 35.76 107.69 43.0 14 10
    62378 35.75 108.06 43.0 21 15
    62394 36.33 107.10 43.5 24 9
    62396 36.36 108.25 42.9 15 11
    鄂尔多斯中部
    15727 37.74 108.28 36.3 29 8
    15729 37.75 108.69 36.6 23 21
    61062 36.64 108.10 42.3 19 4
    61063 36.68 108.47 42.2 15 8
    62403 36.56 107.89 42.3 17 6
    62409 36.75 107.72 42.2 21 6
    62411 36.85 107.28 39.8 25 4
    61064 36.85 108.78 49.8 23 15
    61065 36.95 107.92 38.9 20 17
    61066 36.97 107.60 38.9 26 8
    61067 36.96 108.38 38.9 20 18
    61068 37.13 107.42 39 21 8
    61070 37.17 108.77 38.2 34 15
    61072 37.22 108.38 38.2 24 7
    61073 37.39 107.62 38.1 30 4
    61074 37.45 107.31 37.1 25 7
    61075 37.48 108.82 37.1 27 9
    61076 37.49 108.04 37.1 28 3
    61077 37.49 108.43 37.1 23 21
    下载: 导出CSV

    表 2 

    不同Q值对应的速度与密度跃变结果

    Table 2. 

    The results of S-wave velocity and density contrasts according to different Q values

    Q δβ δρ
    Qp=1340,Qs=600 19% 13%
    Qp=1340,Qs=300 19% 13%
    Qp=670,Qs=600 19% 13%
    Qp=670,Qs=300 19% 13%
    Qp=1340,Qs=600 19% 13%
    Qp=1340,Qs=300 19% 13%
    Qp=670,Qs=600 19% 13%
    Qp=670,Qs=300 19% 13%
    下载: 导出CSV
  •  

    Ammon C J, Randall G E, Zandt G. 1990. On the nonuniqueness of receiver function inversions. Journal of Geophysical Research, 95(B10):15303-15318. doi: 10.1029/JB095iB10p15303

     

    An M J, Shi Y L. 2006. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors, 159(3-4):257-266, doi:10.1016/j.pepi.2006.08.002.

     

    Bao X W, Song X D, Xu M J, et al. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth and Planetary Science Letters, 369-370:129-137, doi:10.1016/j.epsl.2013.03.015.

     

    Chang L J, Wang C Y, Ding Z F. 2011. Upper mantle anisotropy in the Ordos Block and its margins. Science China Earth Sciences, 54(6):888-900, doi:10.1007/s11430-010-4137-2.

     

    Chang L J, Ding Z F, Wang C Y. 2016. Upper mantle anisotropy beneath the northern segment of the north-south tectonic belt in China. Chinese Journal of Geophysics (in Chinese), 59(11):4035-4047, doi:10.6038/cjg20161109.

     

    Chen Q S, Bao X W, Xu S B, et al. 2013. The crustal velocity structure of the ordos block and its southern edge revealed from the ambient seismic noise extraction. Geological Journal of China Universities (in Chinese), 19(3):504-512, doi:10.16108/j.issn.1006-7493.2013.03.012.

     

    Christensen N I. 1996. Poisson's ratio and crustal seismology. Journal of Geophysical Research:Solid Earth, 101(B2):3139-3156, doi:10.1029/95JB03446.

     

    Deng Q D, Cheng S P, Min W, et al. 1999. Discussion on Cenozoic tectonics and dynamics of ordos block. Journal of Geomechanics (in Chinese), 5(3):13-21, doi:10.3969/j.issn.1006-6616.1999.03.003.

     

    Dong H, Wei W B, Ye G F, et al. 2014. Three-dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area:Evidence of regional lithospheric modification. Geochemistry, Geophysics, Geosystems, 15(6):2414-2425, doi:10.1002/2014GC005270.

     

    Efron B, Tibshirani R J. 1998. An Introduction to the Bootstrap. Boca Raton:Chapman & Hall, 436.

     

    Gao X, Guo B, Chen J H, et al. 2018. Rebuilding of the lithosphere beneath the western margin of Ordos:Evidence from multiscale seismic tomography. Chinese Journal of Geophysics (in Chinese), 61(7):2736-2749, doi:10.6038/cjg2018L0319.

     

    Guo H L, Ding Z F, Xu X M. 2017. Upper mantle structure beneath the northern South-North Seismic Zone from teleseismic traveltime data. Chinese Journal of Geophysics (in Chinese), 60(1):86-97, doi:10.6038/cjg20170108.

     

    Huang Z X, Li H Y, Zheng Y J, et al. 2009. The lithosphere of North China Craton from surface wave tomography. Earth and Planetary Science Letters, 288(1-2):164-173, doi:10.1016/j.epsl.2009.09.019.

     

    Jia M, Wang X G, Li S L, et al. 2015. Crustal structures of Ordos block and surrounding regions from receiver functions. Progress in Geophysics (in Chinese), 30(6):2474-2481, doi:10.6038/pg20150605.

     

    Jia S X, Wang F Y, Tian X F, et al. 2014. Crustal structure and tectonic study of North China Craton from a long deep seismic sounding profile. Tectonophysics, 627:48-56, doi:10.1016/j.tecto.2014.04.013.

     

    Jiang M M, Ai Y S, Chen L, et al. 2013. Local modification of the lithosphere beneath the central and western North China Craton:3-D constraints from Rayleigh wave tomography. Gondwana Research, 24(3-4):849-864, doi:10.1016/j.gr.2012.06.018.

     

    Julià J, Ammon C J, Herrmann R B, et al. 2000. Joint inversion of receiver function and surface wave dispersion observations. Geophysical Journal of the Royal Astronomical Society, 143(1):99-112, doi:10.1046/j.1365-246x.2000.00217.x.

     

    Julià J. 2007. Constraining velocity and density contrasts across the crust-mantle boundary with receiver function amplitudes. Geophysical Journal International, 171(1):286-301, doi:10.1111/j.1365-2966.2007.3502.x.

     

    Kennett B L N, Engdahl E R. 1991. Travel times for global earthquake location and phase identification. Geophysical Journal International, 105(2):429-465, doi:10.1111/j.1365-246X.1991.tb06724.x.

     

    Langston C A. 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research:Solid Earth, 84(B9):4749-4762, doi:10.1029/jb084ib09p04749.

     

    Li C J, Bai D H, Xue S, et al. 2017. A magnetotelluric study of the deep electric structure beneath the Ordos Block. Chinese Journal of Geophysics (in Chinese), 60(5):1788-1799, doi:10.6038/cjg20170515.

     

    Li J, Wang X J, Niu F L. 2011. Seismic anisotropy and implications for mantle deformation beneath the NE margin of the Tibet plateau and Ordos plateau. Physics of the Earth and Planetary Interiors, 189(3-4):157-170, doi:10.1016/j.pepi.2011.08.009.

     

    Li X F, Li H Y, Shen Y, et al. 2014. Crustal velocity structure of the Northeastern Tibetan plateau from ambient noise surface-wave tomography and its tectonic implications. Bulletin of the Seismological Society of America, 104(3):1045-1055, doi:10.1785/0120130019.

     

    Li Y H, Wang X C, Zhang R Q, et al. 2017. Crustal structure across the NE Tibetan Plateau and Ordos Block from the joint inversion of receiver functions and Rayleigh-wave dispersions. Tectonophysics, 705:33-41, doi:10.1016/j.tecto.2017.03.020.

     

    Li Y K, Gao R, Mi S X, et al. 2014. The Characteristics of crustal velocity structure for Liupan Mountain-Ordos basin in the northeastern margin of Qinghai-Xizang (Tibet) Plateau. Geological Review (in Chinese), 60(5):1147-1157, doi:10.16509/j.georeview.2014.05.020.

     

    Ligorria J P, Ammon C J. 1999. Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5):1395-1400. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024970340/

     

    Ma Y L. 2013. YASEIS:Yet Another computer program to calculate synthetic seismograms for a spherically multi-layered Earth model.//EGU General Assembly. Vienna:EGU, 15:5596.

     

    Mao H H, Lei J S, Teng J W, et al. 2016. Teleseismic P-wave tomography of the upper mantle along the north-south profile under the northern Ordos basin. Chinese Journal of Geophysics (in Chinese), 59(6):2056-2065, doi:10.6038/cjg20160612.

     

    Niu F L, James D E. 2002. Fine structure of the lowermost crust beneath the Kaapvaal craton and its implications for crustal formation and evolution. Earth and Planetary Science Letters, 200(1-2):121-130, doi:10.1016/s0012-821x(02)00584-8.

     

    Owens T J, Zandt G, Taylor S R. 1984. Seismic evidence for an ancient rift beneath the Cumber land Plateau, Tennessee:A detailed analysis of broadband teleseismic P waveforms. Journal of Geophysical Research:Solid Earth, 89(B9):7783-7795, doi:10.1029/JB089iB09p07783.

     

    Pan S Z, Niu F L. 2011. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis. Earth and Planetary Science Letters, 303(3-4):291-298, doi:10.1016/j.epsl.2011.01.007.

     

    Qian Y P, Shen X Z. 2017. The approach and application of constraining velocity and density contrasts across the Moho using receiver functions. Chinese Journal of Geophysics (in Chinese), 60(8):2980-2992, doi:10.6038/cjg20170807.

     

    Teng J W, Zhang Z J, Zhang X K, et al. 2013. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles. Tectonophysics, 609:202-216, doi:10.1016/j.tecto.2012.11.024.

     

    Tian X B, Teng J W, Zhang H S, et al. 2011. Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis. Physics of the Earth and Planetary Interiors, 184(3-4):186-193, doi:10.1016/j.pepi.2010.11.007.

     

    Wang C Y, Sandvol E, Zhu L, et al. 2014a. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications. Earth and Planetary Science Letters, 387:198-211, doi:10.1016/j.epsl.2013.11.033.

     

    Wang Q, Niu F L, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophysical Journal International, 204(1):167-179, doi:10.1016/j.tecto.2013.11.002.

     

    Wang W L, Wu J P, Fang L H, et al. 2017. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays. Earth and Planetary Science Letters, 462:76-85, doi:10.1016/j.epsl.2016.12.040.

     

    Wang X F, Fang J, Hsu H. 2014b. Three-dimensional density structure of the lithosphere beneath the North China Craton and the mechanisms of its destruction. Tectonophysics, 610:150-158, doi:10.1016/j.tecto.2013.11.002.

     

    Wessel P, Smith W H. 1995. New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76(33):326-329, doi:10.1029/95eo00198.

     

    Wu F Y, Ge W C, Sun D Y, et al. 2003. Discussions on the lithospheric thinning in eastern China. Earth Science Frontiers (in Chinese), 10(3):51-60, doi:10.3321/j.issn:1005-2321.2003.03.004.

     

    Xu J, Gao Z W, Song C Q. 2001. Newly generated seismotectonic zones in north china and its regional seismotectonic framework. Scientia Geologica Sinica, 10(3):159-168. http://www.cnki.com.cn/Article/CJFDTotal-DZKY200103001.htm

     

    Xu Z H, Wang S Y, Pei S P. 2003. Lateral variation of Pn velocity beneath northeastern marginal region of Qingzang plateau. Acta Seismologica Sinica (in Chinese), 25(1):24-31, doi:10.3321/j.issn:0253-3782.2003.01.003.

     

    Yao Z X, Wang C Y, Zeng R S, et al. 2014. Crustal structure in western Qinling tectonic belt and its adjacent regions deduced from receiver functions. Acta Seismologica Sinica (in Chinese), 36(1):1-19, doi:10.3969/j.issn.0253-3782.2014.01.001.

     

    Yu Y, Chen Y J. 2016. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen, China:Eastward Tibetan asthenospheric flow around the southern Ordos. Earth and Planetary Science Letters, 455:1-6, doi:10.1016/j.epsl.2016.08.026.

     

    Zhang X K, Li S L, Wang F Y, et al. 2003. Differences of crustal structures in Northeastern edge of Tibet Plateau, Ordos and Tangshan earthquake region in North China-results of deep seismic sounding. Seismology and Geology (in Chinese), 25(1):51-60, doi:10.3969/j.issn.0253-4967.2003.01.006.

     

    Zhao G Z, Zhan Y, Wang L F, et al. 2010. Electric structure of the crust beneath the Ordos Fault Block. Seismology and Geology (in Chinese), 32(3):345-359, doi:10.3969/j.issn.0253-4967.2010.03.001.

     

    Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research:Solid Earth, 105(B2):2969-2980, doi:10.1029/1999JB900322.

     

    Zhu R X, Chen L, Wu F Y, et al. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China Earth Sciences, 54(6):789-797, doi:10.1007/s11430-011-4203-4.

     

    常利军, 丁志峰, 王椿镛. 2016.南北构造带北段上地幔各向异性特征.地球物理学报, 59(11):4035-4047, doi:10.6038/cjg20161109. http://www.geophy.cn//CN/abstract/abstract13188.shtml

     

    陈强森, 鲍学伟, 徐树斌等. 2013.利用背景噪声反演鄂尔多斯块体及其南缘地区地壳速度结构.高校地质学报, 19(3):504-512, doi:10.16108/j.issn.1006-7493.2013.03.012.

     

    邓起东, 程绍平, 闵伟等. 1999.鄂尔多斯块体新生代构造活动和动力学的讨论.地质力学学报, 5(3):13-21, doi:10.3969/j.issn.1006-6616.1999.03.003.

     

    高翔, 郭飚, 陈九辉等. 2018.地幔上涌对鄂尔多斯西缘岩石圈的改造:来自远震多尺度层析成像的证据.地球物理学报, 61(7):2736-2749, doi:10.6038/cjg2018L0319. http://www.geophy.cn//CN/abstract/abstract14586.shtml

     

    郭慧丽, 丁志峰, 徐小明. 2017.南北地震带北段的远震P波层析成像研究.地球物理学报, 60(1):86-97, doi:10.6038/cjg20170108. http://www.geophy.cn//CN/abstract/abstract13345.shtml

     

    贾萌, 王显光, 李世林等. 2015.鄂尔多斯块体及周边区域地壳结构的接收函数研究.地球物理学进展, 30(6):2474-2481, doi:10.6038/pg20150605.

     

    李晨晶, 白登海, 薛帅等. 2017.鄂尔多斯地块深部岩石圈电性结构研究.地球物理学报, 60(5):1788-1799, doi:10.6038/cjg20170515. http://www.geophy.cn//CN/abstract/abstract13731.shtml

     

    李英康, 高锐, 米胜信等. 2014.青藏高原东北缘六盘山-鄂尔多斯盆地的地壳速度结构特征.地质论评, 60(5):1147-1157, doi:0.3969/j.issn.0371-5736.2014.05.019. http://d.old.wanfangdata.com.cn/Periodical/dzlp201405019

     

    毛慧慧, 雷建设, 滕吉文. 2016.鄂尔多斯盆地北缘南北向剖面上地幔远震P波层析成像.地球物理学报, 59(6):2056-2065, doi:10.6038/cjg20160612. http://www.geophy.cn//CN/abstract/abstract12851.shtml

     

    钱银苹, 沈旭章. 2017.接收函数确定Moho面速度和密度跃变的方法研究及应用.地球物理学报, 60(8):2980-2992, doi:10.6038/cjg20170807. http://www.geophy.cn//CN/abstract/abstract13911.shtml

     

    吴福元, 葛文春, 孙德有等. 2003.中国东部岩石圈减薄研究中的几个问题.地学前缘, 10(3):51-60, doi:10.3321/j.issn:1005-2321.2003.03.004.

     

    许忠淮, 汪素云, 裴顺平. 2003.青藏高原东北缘地区Pn波速度的横向变化.地震学报, 25(1):24-31, doi:10.3321/j.issn:0253-3782.2003.01.003.

     

    姚志祥, 王椿镛, 曾融生等. 2014.利用接收函数方法研究西秦岭构造带及其邻区地壳结构.地震学报, 36(1):1-19, doi:10.3969/j.issn.0253-3782.2014.01.001.

     

    张先康, 李松林, 王夫运等. 2003.青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异——深地震测深的结果.地震地质, 25(1):51-60, doi:10.3969/j.issn.0253-4967.2003.01.006.

     

    赵国泽, 詹艳, 王立凤等. 2010.鄂尔多斯断块地壳电性结构.地震地质, 32(3):345-359, doi:10.3969/j.issn.0253-4967.2010.03.001.

     

    朱日祥, 陈凌, 吴福元等. 2011.华北克拉通破坏的时间、范围与机制.中国科学:地球科学, 41(5):583-592, doi:10.1007/s11430-011-4203-4.

  • 加载中

(10)

(2)

计量
  • 文章访问数:  2306
  • PDF下载数:  494
  • 施引文献:  0
出版历程
收稿日期:  2019-09-07
修回日期:  2020-02-09
上线日期:  2020-03-05

目录