北京地区闪电活动与气溶胶浓度的关系研究

孙萌宇, 郄秀书, 刘冬霞, Yoav Yair, 夏祥鳌, 袁善锋, 王东方, 卢晶雨, AbhaySrivastava, DidierNtwali. 2020. 北京地区闪电活动与气溶胶浓度的关系研究. 地球物理学报, 63(5): 1766-1774, doi: 10.6038/cjg2020N0095
引用本文: 孙萌宇, 郄秀书, 刘冬霞, Yoav Yair, 夏祥鳌, 袁善锋, 王东方, 卢晶雨, AbhaySrivastava, DidierNtwali. 2020. 北京地区闪电活动与气溶胶浓度的关系研究. 地球物理学报, 63(5): 1766-1774, doi: 10.6038/cjg2020N0095
SUN MengYu, QIE XiuShu, LIU DongXia, YOAV Yair, XIA XiangAo, YUAN ShanFeng, WANG DongFang, LU JingYu, ABHAY Srivastava, DIDIER Ntwali. 2020. Analysis of potential effects of aerosol on lightning activity in Beijing metropolitan region. Chinese Journal of Geophysics (in Chinese), 63(5): 1766-1774, doi: 10.6038/cjg2020N0095
Citation: SUN MengYu, QIE XiuShu, LIU DongXia, YOAV Yair, XIA XiangAo, YUAN ShanFeng, WANG DongFang, LU JingYu, ABHAY Srivastava, DIDIER Ntwali. 2020. Analysis of potential effects of aerosol on lightning activity in Beijing metropolitan region. Chinese Journal of Geophysics (in Chinese), 63(5): 1766-1774, doi: 10.6038/cjg2020N0095

北京地区闪电活动与气溶胶浓度的关系研究

  • 基金项目:

    国家自然科学基金国际(地区)合作与交流项目(41761144074), 国家自然科学基金面上项目(41875007)资助

详细信息

Analysis of potential effects of aerosol on lightning activity in Beijing metropolitan region

More Information
  • 基于2015—2017年北京闪电定位网(BLNET)总闪资料与35个自动空气质量监测站PM2.5数据,分析了北京地区(39.5°N—41.0°N,115.0°E—117.5°E)夏季(6—8月)闪电活动与PM2.5的时空分布特征,同时针对117次雷暴天气,探讨了气溶胶浓度变化对闪电活动的可能影响.结果表明:PM2.5浓度及总闪密度均呈现自西北向东南升高的空间分布特征.闪电峰值在污染背景下出现的时间(19:00LT)晚于清洁背景下(15:00LT)约4 h,且总闪百分比(~20%)可达清洁背景下(~9%)的两倍.对雷暴前1~4 h的PM2.5浓度与时间窗(12:00—22:00LT)内总闪数目的中位数进行相关分析,发现PM2.5浓度低于130 μg·m-3时,PM2.5与总闪数存在明显正相关,此时气溶胶可能通过影响云微物理过程进而影响雷暴的对流发展,增强闪电活动;PM2.5大于150 μg·m-3时,总闪数随PM2.5浓度的增加呈减少趋势,可能的原因是高气溶胶浓度下地面太阳辐射显著下降,对流活动受到抑制,导致闪电活动减少.当PM2.5浓度在130~150 μg·m-3时,两者关系不明显.

  • 加载中
  • 图 1 

    夏季(a)总闪密度(单位:fl·km-2·summer-1),分辨率为5 km×5 km;(b)PM2.5各站点平均浓度(单位:μg·m-3)的空间分布

    Figure 1. 

    Spatial distribution of (a) total lightning density (units: fl·km-2·summer-1), spatial resolution is 5 km × 5 km; (b) Average PM2.5 mass concentrations (units: μg·m-3) at different sites during summer season

    图 2 

    夏季相对清洁(实线)与污染(虚线)条件下总闪百分比的日变化

    Figure 2. 

    Diurnal variations of percentage of total flashes number during summer season under relatively clean (solid line) and polluted (dotted line) conditions

    图 3 

    雷暴前不同时刻(1~4 h)PM2.5浓度(单位:μg·m-3)与时间窗口(12:00—22:00LT)内总闪数目(/ 10 h)散点图

    Figure 3. 

    Number of total flashes between 12:00—22:00LT (#/ 10h) as a function of concentrations of PM2.5 at different time (1~4 h) before thunderstorms generated

    图 4 

    雷暴前不同时刻(1~4 h)PM2.5浓度(单位:μg·m-3)与时间窗口(12:00—22:00LT)内总闪数目(/ 10 h)的中位数散点图,实线代表二者之间的拟合曲线

    Figure 4. 

    Median of total flashes number between 12:00—22:00LT (#/10 h) as a function of concentrations of PM2.5 at different time (1~4 h) before thunderstorms generated, the curves represent the trend between them

    图 5 

    雷暴前不同时刻(1~4 h)PM2.5浓度(单位:μg·m-3)与时间窗口(12:00—22:00LT)内总闪数目(/ 10 h)中位数的相关关系,实线代表二者之间的拟合直线

    Figure 5. 

    Relationship between median of total flashes number between 12:00—22:00LT (#/ 10h) and concentrations of PM2.5 at different time (1~4 h) before thunderstorms generated, the lines represent the linear fitting between them

    表 1 

    雷暴前不同时刻(1~4 h)PM2.5浓度(<130 μg·m-3)与时间窗口(12:00—22:00LT)内总闪数目(/10 h)中位数的相关性系数

    Table 1. 

    Correlation coefficients between median of total flashes number between 12:00—22:00LT (#/10 h) and concentrations of PM2.5 (< 130 μg·m-3) at different time (1~4 h) before thunderstorms generated

    时间窗口(12:00—22:00LT)内总闪数目(/10 h) R-Square RMSE f(x)= P1·x+ P2
    P1 P2
    PM2.5浓度(强回波移入北京城区1 h前) 0.64 2363 71.62 -1796
    PM2.5浓度(2 h前) 0.44 2769 58.33 -1170
    PM2.5浓度(3 h前) 0.50 2553 59.72 -1409
    PM2.5浓度(4 h前) 0.35 2775 47.63 -665
    下载: 导出CSV
  •  

    Altaratz O, Koren I, Yair Y, et al. 2010. Lightning response to smoke from Amazonian fires. Geophysical Research Letters, 37(7):L07801, doi:10.1029/2010GL042679.

     

    Fan J W, Zhang R Y, Tao W K, et al. 2008. Effects of aerosol optical properties on deep convective clouds and radiative forcing. Journal of Geophysical Research:Atmospheres, 113(D8):D08209, doi:10.1029/2007JD009257.

     

    Feng G L, Qie X S, Yuan T, et al. 2007. Lightning activity and precipitation structure of hailstorms. Science in China Series D:Earth Sciences, 50(4):629-639, doi:10.1007/s11430-007-2063-8.

     

    Guo J, Deng M, Lee S S, et al. 2016. Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part Ⅰ:Observational analyses. Journal of Geophysical Research:Atmospheres, 121(11):6472-6488, doi:10.1002/2015JD023257.

     

    Jayaratne E R, Saunders C P R, Hallett J. 1983. Laboratory studies of the charging of soft-hail during ice crystal interactions. Quarterly Journal of the Royal Meteorological Society, 109(461):609-630, doi:10.1002/qj.49710946111.

     

    Khain A, Rosenfeld D, Pokrovsky A.2005. Aerosol impact on the dynamics and microphysics of deep convective clouds. Quarterly Journal of the Royal Meteorological Society, 131(611):2639-2663, doi:10.1256/qj.04.62.

     

    Khain A P, Benmoshe N, Pokrovsky A. 2008. Factors determining the impact of aerosols on surface precipitation from clouds:An attempt at classification. Journal of the Atmospheric Sciences, 65(6):1721-1748, doi:10.1175/2007JAS2515.1.

     

    Lal D M, Pawar S D. 2011. Effect of urbanization on lightning over four metropolitan cities of India. Atmospheric Environment, 45(1):191-196, doi:10.1016/j.atmosenv.2010.09.027.

     

    Li Y J, Zhang G S, Wen J, et al. 2012. Spatial and temporal evolution of a multi-cell thunderstorm charge structure in coastal areas. Chinese Journal of Geophysics (in Chinese), 55(10):3203-3212, doi:10.6038/j.issn.0001-5733.2012.10.003.

     

    Markson R. 2007. The global circuit intensity:its measurement and variation over the last 50 years. Bulletin of the American Meteorological Society, 88(2):223-242, doi:10.1175/BAMS-88-2-223.

     

    Orville R E, Huffines G, Nielsen-Gammon J, et al. 2001. Enhancement of cloud-to-ground lightning over Houston, Texas. Geophysical Research Letters, 28(13):2597-2600, doi:10.1029/2001GL012990.

     

    Price C. 1993. Global surface temperatures and the atmospheric electrical circuit. Geophysical Research Letters, 20(13):1363-1366, doi:10.1029/93GL01774.

     

    Qie X S, Yuan T, Xie Y R, et al. 2004. Spatial and temporal distribution of lightning activities over the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 47(6):1122-1127, doi:10.1002/cjg2.596.

     

    Rosenfeld D, Woodley W L. 2000. Deep convective clouds with sustained supercooled liquid water down to-37.5 C. Nature, 405(6785):440-442, doi:10.1038/35013030.

     

    Rosenfeld D, Lohmann U, Raga G B, et al. 2008. Flood or drought:How do aerosols affect precipitation?. Science, 321(5894):1309-1313, doi:10.1126/science.1160606.

     

    Saunders C P R, Keith W D, Mitzeva R P. 1991. The effect of liquid water on thunderstorm charging. Journal of Geophysical Research:Atmospheres, 96(D6):11007-11017, doi:10.1029/91JD00970.

     

    Saunders C P R, Peck S L. 1998. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. Journal of Geophysical Research:Atmospheres, 103(D12):13949-13956, doi:10.1029/97JD02644.

     

    Shi Z, Tan Y B, Tang H Q, et al. 2015. A numerical study of aerosol effects on the electrification and flash rate of thunderstorms. Chinese Journal of Atmospheric Sciences (in Chinese), 39(5):941-952, doi:10.1016/j.jastp.2015.11.006.

     

    Srivastava A, Tian Y, Qie X S, et al. 2017. Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing. Atmospheric Research, 197:76-83, doi:10.1016/j.atmosres.2017.06.026.

     

    Stolz D C, Rutledge S A, Pierce J R. 2015. Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. Journal of Geophysical Research:Atmospheres, 120(12):6207-6231, doi:10.1002/2014JD023033.

     

    Takahashi T. 1978. Riming electrification as a charge generation mechanism in thunderstorms. Journal of the Atmospheric Sciences, 35(8):1536-1548, doi:10.1175/1520-0469(1978)035〈1536:REAACG〉2.0.CO; 2.

     

    Tan Y B, Peng L, Shi Z, et al. 2016. Lightning flash density in relation to aerosol over Nanjing (China). Atmospheric Research, 174-175:1-8, doi:10.1016/j.atmosres.2016.01.009.

     

    Tan Y B, Ma X, Ciang C Y, et al. 2017. A numerical study of the effects of aerosol on electrification and lightning discharges during thunderstorms. Chinese Journal of Geophysics (in Chinese), 60(8):3041-3050, doi:10.6038/cjg20170812.

     

    Thornton J A, Virts K S, Holzworth R H, et al. 2017. Lightning enhancement over major oceanic shipping lanes. Geophysical Research Letters, 44(17):9102-9111, doi:10.1002/2017GL074982.

     

    Wall C, Zipser E, Liu C T. 2014. An investigation of the aerosol indirect effect on convective intensity using satellite observations. Journal of the Atmospheric Sciences, 71(1):430-447, doi:10.1175/JAS-D-130158.1.

     

    Wang Q Q, Li Z Q, Guo J P, et al. 2018. The climate impact of aerosols on the lightning flash rate:is it detectable from long-term measurements?. Atmospheric Chemistry and Physics, 18(17):12797-12816, doi:10.5194/acp-18-12797-2018.

     

    Wang Y, Qie X S, Wang D F, et al. 2016. Beijing Lightning Network (BLNET) and the observation on preliminary breakdown processes. Atmospheric Research, 171:121-132, doi:10.1016/j.atmosres.2015.12.012.

     

    Williams E, Mushtak V, Rosenfeld D, et al. 2005. Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmospheric Research, 76(1-4):288-306, doi:10.1016/j.atmosres.2004.11.009.

     

    Wu F, Cui X P, Zhang D L, et al. 2017. The relationship of lightning activity and short-duration rainfall events during warm seasons over the Beijing metropolitan region. Atmospheric Research, 195:31-43, doi:10.1016/j.atmosres.2017.04.032.

     

    Xiao X, Sun J Z, Chen M X, et al. 2017. The characteristics of weakly forced mountain-to-plain precipitation systems based on radar observations and high-resolution reanalysis. Journal of Geophysical Research:Atmospheres, 122(6):3193-3213, doi:10.1002/2016JD025914.

     

    Xiong Y J, Qie X S, Zhou J, et al. 2006. Regional responses of lightning activities to relative humidity of the surface. Chinese Journal of Geophysics (in Chinese), 49(2):367-374, doi:10.1002/cjg2.840.

     

    Yang X, Yao Z Y, Li Z Q, et al. 2013. Heavy air pollution suppresses summer thunderstorms in central China. Journal of Atmospheric and Solar-Terrestrial Physics, 95:28-40, doi:10.1016/j.jastp.2012.12.023.

     

    Yuan T L, Remer L A, Pickering K E, et al. 2011. Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophysical Research Letters, 38(4):L04701, doi:10.1029/2010GL046052.

     

    Zhao Y, Zhang Y J, Dong W S, et al. 2004. Prelimiinary analysis of characteristics of lightning in the Nagqu area of the Qinghai-Xizang plateau. Chinese Journal of Geophysics (in Chinese), 47(3):405-410.

     

    Zipser E J, Lutz K R. 1994. The vertical profile of radar reflectivity of convective cells:A strong indicator of storm intensity and lightning probability?. Monthly Weather Review, 122(8):1751-1759, doi:10.1175/15200493(1994)122 < 1751:TVPORR>2.0.CO; 2.

     

    李亚珺, 张广庶, 文军等. 2012.沿海地区一次多单体雷暴电荷结构时空演变.地球物理学报, 55(10):3203-3212, doi:10.6038/j.issn.0001-5733.2012.10.003. http://www.geophy.cn//CN/abstract/abstract8959.shtml

     

    师正, 谭涌波, 唐慧强等. 2015.气溶胶对雷暴云起电以及闪电发生率影响的数值模拟.大气科学, 39(5):941-952, doi:10.3878/j.issn.1006-9895.1412.14230.

     

    谭涌波, 马肖, 向春燕等. 2017.气溶胶对雷暴云电过程影响的数值模拟研究.地球物理学报, 60(8):3041-3051, doi:10.6038/cjg20170812. http://www.geophy.cn//CN/abstract/abstract13916.shtml

     

    郄秀书, 袁铁, 谢毅然等. 2004.青藏高原闪电活动的时空分布特征.地球物理学报, 47(6):997-1002, doi:10.3321/j.issn:0001-5733.2004.06.010. http://www.geophy.cn//CN/abstract/abstract554.shtml

     

    熊亚军, 郄秀书, 周筠君, 袁铁. 2006.区域闪电活动对地面相对湿度的响应.地球物理学报, 49(2):367-374, doi:10.3321/j.issn:0001-5733.2006.02.009. http://www.geophy.cn//CN/abstract/abstract78.shtml

     

    赵阳, 张义军, 董万胜等. 2004.青藏高原那曲地区雷电特征初步分析.地球物理学报, 47(3):405-410, doi:10.3321/j.issn:0001-5733.2004.03.006. http://www.geophy.cn//CN/abstract/abstract1622.shtml

  • 加载中

(5)

(1)

计量
  • 文章访问数:  2630
  • PDF下载数:  396
  • 施引文献:  0
出版历程
收稿日期:  2019-03-09
修回日期:  2019-09-18
上线日期:  2020-05-05

目录