基于方差分量估计的多源InSAR数据自适应融合形变测量

敖萌, 张路, 廖明生, 张丽. 2020. 基于方差分量估计的多源InSAR数据自适应融合形变测量. 地球物理学报, 63(8): 2901-2911, doi: 10.6038/cjg2020N0066
引用本文: 敖萌, 张路, 廖明生, 张丽. 2020. 基于方差分量估计的多源InSAR数据自适应融合形变测量. 地球物理学报, 63(8): 2901-2911, doi: 10.6038/cjg2020N0066
AO Meng, ZHANG Lu, LIAO MingSheng, ZHANG Li. 2020. Deformation monitoring with adaptive integration of multi-source InSAR data based on variance component estimation. Chinese Journal of Geophysics (in Chinese), 63(8): 2901-2911, doi: 10.6038/cjg2020N0066
Citation: AO Meng, ZHANG Lu, LIAO MingSheng, ZHANG Li. 2020. Deformation monitoring with adaptive integration of multi-source InSAR data based on variance component estimation. Chinese Journal of Geophysics (in Chinese), 63(8): 2901-2911, doi: 10.6038/cjg2020N0066

基于方差分量估计的多源InSAR数据自适应融合形变测量

  • 基金项目:

    国家重点研发计划(2019YFC1509201,2017YFB0502700),国家自然科学基金(41774006,41904001)资助

详细信息
    作者简介:

    敖萌, 男, 蒙古族, 1989年生, 博士研究生, 研究方向为InSAR地质灾害调查与监测.E-mail:aomeng@whu.edu.cn

    通讯作者: 廖明生, 男, 教授, 博士生导师, 主要从事雷达遥感研究.E-mail:liao@whu.edu.cn
  • 中图分类号: P237

Deformation monitoring with adaptive integration of multi-source InSAR data based on variance component estimation

More Information
  • 近年来,合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,InSAR)技术在地面沉降监测方面展现了巨大的应用潜力,但受其重访周期和一维形变测量能力的限制,仅利用单一轨道卫星观测数据很难揭示真实的地表形变特征及其演化规律.随着在轨运行的SAR卫星系统不断增加,使得融合相同时间段内覆盖同一区域的多源多轨道InSAR数据成为可能.然而目前普遍采用的多源InSAR数据融合方法均为针对大尺度形变监测设计,或者忽略南北向形变甚至水平形变,容易造成误判.为此,本文对经典小基线集(Small Baseline Subset,SBAS)时序InSAR分析方法进行改进,在其形变反演模型中加入东西向和南北向形变参数,采用方差分量估计方法解算多源观测数据验后方差,通过迭代精化确定权重矩阵,从而获得形变参数的最优估值.使用美国南加州地区的ALOS PALSAR和ENVISAT ASAR数据开展实验,利用南加州综合GPS网(SCIGN)位于研究区域内的9个站点观测数据进行验证,结果表明本文方法得到的融合形变测量结果在垂直向上能够准确反映地表形变波动,周期性与GPS观测比较一致;同时,融合得到的三维形变场显示南加州洛杉矶地区存在不可忽略的水平形变,东西向形变测量精度略高于南北向.因此,基于方差分量估计的多源InSAR融合方法在提高形变测量时间序列连续性的同时,能够更准确地反演研究区域三维形变特征.

  • 加载中
  • 图 1 

    数据处理流程图

    Figure 1. 

    Flow chart of data processing

    图 2 

    数据覆盖范围

    Figure 2. 

    Map of SAR data coverage

    图 3 

    时空基线分布图

    Figure 3. 

    Illustration of temporal-spatial baseline distribution

    图 4 

    三个数据集分别解算得到的年平均形变速率

    Figure 4. 

    Annual mean deformation rate derived from three datasets

    图 5 

    方差分量估计方法(蓝色虚线)与等权估计方法(绿色虚线)解算垂直向形变时间序列与GPS监测数据(灰色实线)对比结果.各子图左下角给出了对应GPS观测站点名称

    Figure 5. 

    Comparisons of time series vertical deformations derived by VCE method (blue dash line) and Equal Weight estimation method (green dash line) versus GPS measurements (grey solid line). The name of corresponding GPS measurement station is given at the lower left corner of each subfigure

    图 6 

    水平方向年形变速率结果

    Figure 6. 

    Results of annual deformation rate in horizontal direction

    图 7 

    沿图 6中剖线位置提取的形变速率结果

    Figure 7. 

    Deformation rate results extracted along the profile in Fig. 6

    图 8 

    水平形变的速率和方向统计分布

    Figure 8. 

    Statistical distributions of horizontal deformation rates and directions

    表 1 

    三组数据集参数列表

    Table 1. 

    List of parameters for the three SAR data stacks

    数据集 ALOS ENVISAT ENVISAT
    轨道方向 升轨 升轨 降轨
    获取时间 2006-12-31-2010-10-11 2005-01-26-2010-09-22 2005-05-14-2010-09-25
    影像数(景) 22 47 51
    波长(m) 0.236 0.056 0.056
    入射角(°) 38.5 22.8 22.6
    方位角(°) -13.006 -13.407 -166.532
    极化方式 HH+HV VV VV
    下载: 导出CSV

    表 2 

    水平方向年形变速率结果与GPS监测数据差值均方根误差(单位: mm·a-1)

    Table 2. 

    Root mean square error of deformation rate difference between multi-source InSAR data calculated and GPS measurement data in horizontal direction (unit: mm·a-1)

    GPS观测站点 形变测量误差(GPS-InSAR)
    东西向 南北向
    BGIS -1.7629 8.3180
    BKMS -10.9991 20.9780
    CVHS -1.2625 -14.2258
    DYHS -11.9075 9.0510
    ELSC -8.7033 9.5063
    HOLP 8.1344 5.8307
    LBC1 4.3177 2.5154
    PMHS 5.3610 2.1920
    WHC1 -8.5293 -8.0017
    均方根误差 7.567 10.294
    下载: 导出CSV
  •  

    Bawden G W, Thatcher W, Stein R S, et al. 2001. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature, 412(6849):812-815. doi: 10.1038/35090558

     

    Berardino P, Fornaro G, Lanari R, et al. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11):2375-2383. doi: 10.1109/TGRS.2002.803792

     

    Davis T L, Namson J, Yerkes R F. 1989. A cross section of the Los Angeles area:Seismically active fold and thrust belt, the 1987 Whittier Narrows Earthquake, and earthquake hazard. Journal of Geophysical Research:Solid Earth, 94(B7):9644-9664. doi: 10.1029/JB094iB07p09644

     

    Deng L, Liu G X, Zhang R, et al. 2016. A multi-platform MC-SBAS method for extracting long-term ground deformation. Acta Geodaetica et Cartographica (in Chinese), 45(2):213-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201602014

     

    Ferretti A, Prati C, Roeea F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5):2202-2212. doi: 10.1109/36.868878

     

    Hauksson E. 1987. Seismotectonics of the Newport-Inglewood fault zone in the Los Angeles Basin, southern California. Bulletin of the Seismological Society of America, 77(2):539-561. http://www.researchgate.net/publication/265487588_Seismotectonics_of_the_Newport-Inglewood_fault_zone_in_the_Los_Angeles_basin_southern_California

     

    Hauksson E, Jones L M. 1989. The 1987 Whittier Narrows earthquake sequence in Los Angeles, southern California:Seismological and tectonic analysis. Journal of Geophysical Research:Solid Earth, 94(B7):9569-9589. doi: 10.1029/JB094iB07p09569

     

    Hauksson E, Jones L M, Hutton K. 1995. The 1994 Northridge earthquake sequence in California:Seismological and tectonic aspects. Journal of Geophysical Research:Solid Earth, 100(B7):12335-12355. doi: 10.1029/95JB00865

     

    Hu J, Li Z W, Ding X L, et al. 2013. Spatial-temporal surface deformation of Los Angeles over 2003-2007 from weighted least squares DInSAR. International Journal of Applied Earth Observation and Geoinformation, 21:484-492. doi: 10.1016/j.jag.2012.07.007

     

    Hu Q, Ma R H, Chen F L, et al. 2018. Urban landscape monitoring based on high-resolution spaceborne TerraSAR-X data:a case study of Nanjing City, China. Remote Sensing Letters, 9(5):447-456. http://www.tandfonline.com/doi/abs/10.1080/2150704X.2018.1437289

     

    Lu Z, Danskin W R. 2001. InSAR analysis of natural recharge to define structure of a ground-water basin, San Bernardino, California. Geophysical Research Letters, 28(13):2661-2664. doi: 10.1029/2000GL012753

     

    Mellors R J, Magistrale H, Earle P, et al. 2004. Comparison of four moderate-size earthquakes in southern California using seismology and InSAR. Bulletin of the Seismological Society of America, 94(6):2004-2014. doi: 10.1785/0120020219

     

    Shaw J H, Shearer P M. 1999. An elusive blind thrust fault beneath metropolitan Los Angeles. Science, 283(5407):1516-1518. doi: 10.1126/science.283.5407.1516

     

    Wang Y, Liao M S, Li D R, et al. 2007. Subsidence velocity retrieval from long-term coherent targets in radar interferometric stacks. Chinese Journal of Geophysics (in Chinese), 50(2):598-604. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200702033.htm

     

    Wang Z W, Yu S W, Tao Q X, et al. 2018. A method of monitoring three-dimensional ground displacement in mining areas by integrating multiple InSAR methods. International Journal of Remote Sensing, 39(4):1199-1219. doi: 10.1080/01431161.2017.1399473

     

    Wason K M, Bock Y, Sandwell D T. 2002. Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles basin.Journal of Geophysical Research, 107(B4):2074, doi:l0.1029/2001JB000470. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2001JB000470

     

    Xu W B, Li Z W, Ding X L, et al. 2012. Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area. Chinese Journal of Geophysics (in Chinese), 55(2):452-461, doi:10.6038/j.issn.0001-5733.2012.02.009.

     

    Zhang L, Lu Z, Ding X L, et al. 2012. Mapping ground surface deformation using temporarily coherent point SAR interferometry:Application to Los Angeles Basin. Remote Sensing of Environment, 117:429-439. doi: 10.1016/j.rse.2011.10.020

     

    Zhang Q, Zhao C Y, Ding X L, et al. 2009. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi'an land subsidence and ground fissure by using GPS and InSAR techniques. Chinese Journal of Geophysics (in Chinese), 52(5):1214-1222, doi:10.3969/j.issn.0001-5733.2009.05.010.

     

    Zhang Q, Zhang J Q, Yue D J, et al. 2010. Advanced Theory and Application of Surveying Data (in Chinese). Beijing:Surveying and Mapping Press.

     

    邓琳, 刘国祥, 张瑞等. 2016.多平台MC-SBAS长时序建模与形变提取方法.测绘学报, 45(2):213-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201602014

     

    王艳, 廖明生, 李德仁等. 2007.利用长时间序列相干目标获取地面沉降场.地球物理学报, 50(2):598-604. doi: 10.3321/j.issn:0001-5733.2007.02.034 http://www.geophy.cn//CN/abstract/abstract1461.shtml

     

    许文斌, 李志伟, 丁晓利等. 2012.利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数.地球物理学报, 55(2):452-461, doi:10.6038/j.issn.0001-5733.2012.02.009. http://www.geophy.cn//CN/abstract/abstract8420.shtml

     

    张勤, 赵超英, 丁晓利等. 2009.利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征.地球物理学报, 52(5):1214-1222, doi:10.3969/j.issn.0001-5733.2009.05.010. http://www.geophy.cn//CN/abstract/abstract1027.shtml

     

    张勤, 张菊清, 岳东杰等. 2011.近代测量数据处理与应用.北京:测绘出版社.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  2277
  • PDF下载数:  494
  • 施引文献:  0
出版历程
收稿日期:  2019-08-19
修回日期:  2019-11-21
上线日期:  2020-08-05

目录