基于改进的接收点插值算法的频率域海洋可控源电磁法2.5维正演

李刚, 李予国, 韩波, 段双敏. 2017. 基于改进的接收点插值算法的频率域海洋可控源电磁法2.5维正演. 地球物理学报, 60(12): 4887-4900, doi: 10.6038/cjg20171228
引用本文: 李刚, 李予国, 韩波, 段双敏. 2017. 基于改进的接收点插值算法的频率域海洋可控源电磁法2.5维正演. 地球物理学报, 60(12): 4887-4900, doi: 10.6038/cjg20171228
LI Gang, LI Yu-Guo, HAN Bo, DUAN Shuang-Min. 2017. 2.5D marine CSEM modeling in the frequency-domain based on an improved interpolation scheme at receiver positions. Chinese Journal of Geophysics (in Chinese), 60(12): 4887-4900, doi: 10.6038/cjg20171228
Citation: LI Gang, LI Yu-Guo, HAN Bo, DUAN Shuang-Min. 2017. 2.5D marine CSEM modeling in the frequency-domain based on an improved interpolation scheme at receiver positions. Chinese Journal of Geophysics (in Chinese), 60(12): 4887-4900, doi: 10.6038/cjg20171228

基于改进的接收点插值算法的频率域海洋可控源电磁法2.5维正演

  • 基金项目:

    国家自然科学基金项目(41704075,41604063)和山东省自然科学基金项目(ZR2016DQ15,ZR2016DB31)联合资助

详细信息
    作者简介:

    李刚, 男, 1986年生, 博士, 主要从事海洋电磁场正反演及电磁与地震资料联合反演研究.E-mail:gli@geomar.de

    通讯作者: 李予国, 1965年生, 教授, 主要从事电磁场数值模拟和反演方法以及海洋电磁法的研究工作.E-mail:yuguo@ouc.edu.cn
  • 中图分类号: P631

2.5D marine CSEM modeling in the frequency-domain based on an improved interpolation scheme at receiver positions

More Information
  • 在海洋可控源电磁法勘探中,接收站常置于海底.在进行海洋电磁场模拟时,由于海水和海底介质存在显著电性差异,这给海底接收点处场值的求取带来困难.本文提出一种新的接收点插值算法,该算法考虑到海底电场法向分量不连续性问题,用法向电流分量进行插值以准确求取海底任意接收点处电磁场值.本文利用交错网格有限差分法实现了二维介质中频率域海洋可控源法(CSEM)正演.对构造走向做傅里叶变换,将三维电磁模拟问题转换为波数域2.5维问题,即三维场源激励下针对二维地电模型的电磁模拟问题.使用交错网格有限差分法,基于一次场/二次场分离方法导出波数域二次电场离散形式,并进一步求得波数域电磁场.采用本文提出的改进的插值算法可求得海底任意接收点处波数域电磁场,采用傅里叶逆变换对波数域电磁场进行积分可得到接收点处空间域电磁场.模型算例表明,与常规的线性插值和严格插值算法相比,本文提出的改进的插值算法具有更高的精度.

  • 加载中
  • 图 1 

    二维网格单元中电磁场交错采样示意图

    Figure 1. 

    Sketch showing 2D staggered-grid sampling

    图 2 

    6×6网格剖分情况下系数矩阵K非零元素位置分布

    Figure 2. 

    Illustration of the symmetric structure of the stiffness matrix for a 6×6 staggered grid.

    图 3 

    海洋一维储层模型

    Figure 3. 

    1D canonical reservoir model

    图 4 

    网格剖分为168×88情况下插值结果对比

    Figure 4. 

    Comparison of interpolating results for the 168×88 staggered-gridding

    图 5 

    网格剖分为168×64情况下插值结果对比

    Figure 5. 

    Comparison of interpolating results for the 168×64 staggered-gridding

    图 6 

    网格剖分为112×88情况下插值结果对比

    Figure 6. 

    Comparison of interpolating results for the 112×88 staggered-gridding

    图 7 

    网格剖分为112×64情况下插值结果对比

    Figure 7. 

    Comparison of interpolating results for the 112×64 staggered-gridding

    图 8 

    海洋二维储层模型

    Figure 8. 

    2D canonical reservoir model

    图 9 

    海洋二维储层模型情况下三角网格剖分示意图

    Figure 9. 

    Triangular gridding for 2D canonical reservoir model

    图 10 

    网格剖分为168×90情况下插值结果对比

    Figure 10. 

    Comparison of interpolating results for the 168×90 staggered-gridding

    图 11 

    网格剖分为168×66情况下插值结果对比

    Figure 11. 

    Comparison of interpolating results for the 168×66 staggered-gridding

    图 12 

    网格剖分为112×90情况下插值结果对比

    Figure 12. 

    Comparison of interpolating results for the 112×90 staggered-gridding

    图 13 

    网格剖分为112×66情况下插值结果对比

    Figure 13. 

    Comparison of interpolating results for the 112×66 staggered-gridding

    表 1 

    一维模型情况下四种网格剖分对比

    Table 1. 

    Four cases of staggered-gridding of the 1D canonical reservoir model

    序号网格总数y方向网格
    最小长度(m)
    z方向网格
    最小长度(m)
    1168×8810050
    2168×64100100
    3112×8820050
    4112×64200100
    下载: 导出CSV

    表 2 

    二维模型情况下四种网格剖分对比

    Table 2. 

    Four cases of staggered-gridding of the 2D canonical reservoir model

    序号网格
    总数
    y方向网格
    最小长度(m)
    z方向网格
    最小长度(m)
    1168×9010050
    2168×66100100
    3112×9020050
    4112×66200100
    下载: 导出CSV
  •  

    Abubakar A, Habashy T M, Druskin V L, et al. 2008. 2.5 D forward and inverse modeling for interpreting low-frequency electromagnetic measurements. Geophysics, 73(4):F165-F177. doi: 10.1190/1.2937466 https://www.researchgate.net/publication/236851605_25_D_forward...

     

    Amestoy P R, Duff I S, L'Excellent J Y, et al. 2001. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15-41. doi: 10.1137/S0895479899358194

     

    Anderson W L. 1983. Fourier cosine and sine transforms using lagged convolutions in double-precision (subprograms DLAGF0/DLAGF1). Technical report, U. S. Department of the Interior, Geological Survey (Open-File Report 83-320).

     

    Avdeev D B. 2005. Three-dimensional electromagnetic modelling and inversion from theory to application. Surveys in Geophysics, 26(6):767-799. doi: 10.1007/s10712-005-1836-x https://link.springer.com/article/10.1007/s10712-005-1836-x

     

    Commer M, Newman G A. 2008. New advances in three-dimensional controlled-source electromagnetic inversion. Geophysical Journal International, 172(2):513-535. doi: 10.1111/gji.2008.172.issue-2

     

    Constable S. 2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics, 75(5):75A67-75A81. doi: 10.1190/1.3483451 https://www.researchgate.net/publication/228868609_Ten_years_of...

     

    Constable S, Orange A, Key K. 2015. And the geophysicist replied:"Which model do you want?". Geophysics, 80(3):E197-E212. doi: 10.1190/geo2014-0381.1 http://adsabs.harvard.edu/abs/2015Geop...80E.197C

     

    Crepaldi J L S, Buonora M P P, Figueiredo I. 2011. Fast marine CSEM inversion in the CMP domain using analytical derivatives. Geophysics, 76(5):F303-F313. doi: 10.1190/geo2010-0237.1 http://geophysics.geoscienceworld.org/content/76/5/F303

     

    Dai S K, Wang S G, Zhang Q J, et al. 2013. 2. 5D forward and inversion of CSEM in frequency domain. The Chinese Journal of Nonferrous Metals (in Chinese), 23(9):2513-2523. https://www.researchgate.net/publication/289242576_25D_forward_and...

     

    de Groot-Hedlin C. 2006. Finite-difference modeling of magnetotelluric fields:Error estimates for uniform and nonuniform grids. Geophysics, 71(3):G97-G106. doi: 10.1190/1.2195991

     

    Di Q Y, Unsworth M, Wang M Y. 2004. 2.5-D CSAMT modeling with the finite element method over 2-D complex earth media. Chinese Journal of Geophysics (in Chinese), 47(4):723-730. https://www.researchgate.net/publication/264354529_25-D_CSAMT...

     

    Everett M E, Edwards R N. 1993. Transient marine electromagnetics:the 2.5-D forward problem. Geophysical Journal International, 113(3):545-561. doi: 10.1111/gji.1993.113.issue-3 https://www.researchgate.net/publication/229735315_Transient...

     

    Haber E, Ascher U M, Aruliah D A, et al. 2000. Fast simulation of 3D electromagnetic problems using potentials. Journal of Computational Physics, 163(1):150-171. doi: 10.1006/jcph.2000.6545 https://www.researchgate.net/publication/222682554_Fast_Simulation...

     

    Han B, Hu X Y, Huang Y F, et al. 2015. 3-D frequency-domain CSEM modeling using a parallel direct solver. Chinese Journal of Geophysics (in Chinese), 58(8):2812-2826, doi:10.6038/cjg20150816. https://www.researchgate.net/publication/284737462_3-D_frequency...

     

    Key K. 2009. 1D inversion of multicomponent, multifrequency marine CSEM data:methodology and synthetic studies for resolving thin resistive layers. Geophysics, 74(2):F9-F20. doi: 10.1190/1.3058434

     

    Kong F N, Johnstad S E, Røsten T, et al. 2008. A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media. Geophysics, 73(1):F9-F19. doi: 10.1190/1.2819691

     

    Li J H, Farquharson C G, Hu X Y, et al. 2016. A vector finite element solver of three-dimensional modelling for a long grounded wire source based on total electric field. Chinese Journal of Geophysics (in Chinese), 59(4):1521-1534, doi:10.6038/cjg20160432. https://www.researchgate.net/publication/282987077_Three...

     

    Li Y G, Key K. 2007. 2D marine controlled-source electromagnetic modeling:Part 1-An adaptive finite-element algorithm. Geophysics, 72(2):WA51-WA62. doi: 10.1190/1.2432262

     

    Li Y G, Li G. 2016. Electromagnetic field expressions in the wavenumber domain from both the horizontal and vertical electric dipoles. Journal of Geophysics and Engineering, 13(4):505-515. doi: 10.1088/1742-2132/13/4/505 http://adsabs.harvard.edu/abs/2016JGE....13..505L

     

    Luo Y Z, Meng Y L. 1986. Some problems on resistivity modeling for two-dimensional structures by the finite element method. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 29(6):613-621. http://manu39.magtech.com.cn/Geophy/EN/Y1986/V29/I06/613

     

    Mackie R L, Torquil S J, Madden T R. 1994. Three-dimensional electromagnetic modeling using finite difference equations:The magnetotelluric example. Radio Science, 29(4):923-935. doi: 10.1029/94RS00326

     

    Mitsuhata Y. 2000. 2-D electromagnetic modeling by finite-element method with a dipole source and topography. Geophysics, 65(2):465-475. doi: 10.1190/1.1444740 http://www.wenkuxiazai.com/doc/466946186137ee06eef91841.html

     

    Myer D, Key K, Constable S. 2015. Marine CSEM of the Scarborough gas field, Part 2:2D inversion. Geophysics, 80(3):E187-E196. doi: 10.1190/geo2014-0438.1 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.701.5229

     

    Newman G A, Alumbaugh D L. 1995. Frequency domain modeling of airborne electromagnetic responses using staggered finite differences. Geophysical Prospecting, 43(8):1021-1042. doi: 10.1111/gpr.1995.43.issue-8 https://www.researchgate.net/publication/227938027_Frequency...

     

    Shantsev D V, Maaø F A. 2015. Rigorous interpolation near tilted interfaces in 3-D finite-difference EM modelling. Geophysical Journal International, 200(2):743-755. https://academic.oup.com/gji/article-pdf/200/2/745/9643845/ggu429.pdf

     

    Shen J S, Sun W B. 2008. A study on the 2.5-D electromagnetic modeling by the finite element method and the wave number selection. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 30(2):135-144. http://digitalcommons.liberty.edu/honors/388/

     

    Smith J T. 1996. Conservative modeling of 3-D electromagnetic fields, Part Ⅰ:Properties and error analysis. Geophysics, 61(5):1308-1318. doi: 10.1190/1.1444054

     

    Stoyer C H, Greenfield R J. 1976. Numerical solutions of the response of a two-dimensional earth to an oscillating magnetic dipole source. Geophysics, 41(3):519-530. doi: 10.1190/1.1440630

     

    Streich R. 2009. 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data:Direct solution and optimization for high accuracy. Geophysics, 74(5):F95-F105. doi: 10.1190/1.3196241 https://link.springer.com/article/10.1007/s11200-013-0721-1

     

    Streich R, Becken M, Ritter O. 2012. 2.5D controlled-source EM modeling with general 3D source geometries. Geophysics, 76(6):F387-F393. http://library.seg.org/doi/abs/10.1190/geo2011-0111.1

     

    Torres-Verdín T, Habashy T M. 1994. Rapid 2.5-dimensional forward modeling and inversion via a new nonlinear scattering approximation. Radio Science, 29(4):1051-1079. doi: 10.1029/94RS00974

     

    Unsworth M J, Travis B J, Chave A D. 1993. Electromagnetic induction by a finite electric dipole source over a 2-D earth. Geophysics, 58(2):198-214. doi: 10.1190/1.1443406 http://geophysics.geoscienceworld.org/content/58/2/198

     

    Ward S H, Hohmann G W. 1988. Electromagnetic theory for geophysical applications.//Nabighian M N. Electromagnetic Methods in Applied Geophysics. Society of Exploration Geophysics, 131-311.

     

    Weitemeyer K, Gao G Z, Constable S, et al. 2010. The practical application of 2D inversion to marine controlled-source electromagnetic data. Geophysics, 75(6):F199-F211. doi: 10.1190/1.3506004

     

    Weitemeyer K, Constable S. 2014. Navigating marine electromagnetic transmitters using dipole field geometry. Geophysical Prospecting, 62(3):573-596. doi: 10.1111/gpr.2014.62.issue-3 https://scripps.ucsd.edu/biblio/navigating-marine-electromagnetic...

     

    Wirianto M, Mulder W A, Slob E C. 2011. Applying essentially non-oscillatory interpolation to controlled-source electromagnetic modelling. Geophysical Prospecting, 59(1):161-175. doi: 10.1111/gpr.2010.59.issue-1 https://link.springer.com/article/10.1007/s00024-017-1524-z

     

    Xu S Z, Duan B C, Zhang D H. 2000. Selection of the wavenumbers k using an optimization method for the inverse Fourier transform in 2.5D electrical modelling. Geophysical Prospecting, 48(5):789-796. doi: 10.1046/j.1365-2478.2000.00210.x https://www.researchgate.net/publication/230411923_Selection_of...

     

    Yin C C, Zhang B, Liu Y H, et al. 2015. 2.5-D forward modeling of the time-domain airborne EM system in areas with topographic relief. Chinese Journal of Geophysics (in Chinese), 58(4):1411-1424, doi:10.6038/cjg20150427. https://www.researchgate.net/publication/283225990_25-D_forward...

     

    Zhdanov M S. 2010. Electromagnetic geophysics:Notes from the past and the road ahead. Geophysics, 75(5):75A49-75A66. http://geophysics.geoscienceworld.org/content/75/5/75A49

     

    戴世坤, 王顺国, 张钱江等. 2013.频率域可控源电磁法2.5D正反演.中国有色金属学报, 23(9):2513-2523. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zyxz201309022&dbname=CJFD&dbcode=CJFQ

     

    底青云, Unsworth M, 王妙月. 2004.复杂介质有限元法2.5维可控源音频大地电磁法数值模拟.地球物理学报, 47(4):723-730. http://www.geophy.cn/CN/abstract/abstract1535.shtml

     

    韩波, 胡祥云, 黄一凡等. 2015.基于并行化直接解法的频率域可控源电磁三维正演.地球物理学报, 58(8):2812-2826, doi:10.6038/cjg20150816. http://www.geophy.cn/CN/abstract/abstract11735.shtml

     

    李建慧, Farquharson C G, 胡祥云等. 2016.基于电场总场矢量有限元法的接地长导线源三维正演.地球物理学报, 59(4):1521-1534, doi:10.6038/cjg20160432. http://www.geophy.cn/CN/abstract/abstract12740.shtml

     

    罗延钟, 孟永良. 1986.关于用有限单元法对二维构造作电阻率法模拟的几个问题.地球物理学报, 29(6):613-621. http://www.geophy.cn/CN/abstract/abstract5000.shtml

     

    沈金松, 孙文博. 2008. 2.5维电磁响应的有限元模拟与波数取值研究.物探化探计算技术, 30(2):135-144. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wtht200802014&dbname=CJFD&dbcode=CJFQ

     

    殷长春, 张博, 刘云鹤等. 2015. 2.5维起伏地表条件下时间域航空电磁正演模拟.地球物理学报, 58(4):1411-1424, doi:10.6038/cjg20150427. http://www.geophy.cn/CN/abstract/abstract11402.shtml

  • 加载中

(13)

(2)

计量
  • 文章访问数:  1424
  • PDF下载数:  530
  • 施引文献:  0
出版历程
收稿日期:  2016-11-13
修回日期:  2016-12-02
上线日期:  2017-12-05

目录