花东海盆浊流沉积的磁性特征及其环境意义

李波, 王艳, 钟和贤, 张江勇, 李顺, 李学杰, 高红芳. 花东海盆浊流沉积的磁性特征及其环境意义[J]. 地球物理学报, 2016, 59(9): 3330-3342, doi: 10.6038/cjg20160917
引用本文: 李波, 王艳, 钟和贤, 张江勇, 李顺, 李学杰, 高红芳. 花东海盆浊流沉积的磁性特征及其环境意义[J]. 地球物理学报, 2016, 59(9): 3330-3342, doi: 10.6038/cjg20160917
LI Bo, WANG Yan, ZHONG He-Xian, ZHANG Jiang-Yong, LI Shun, LI Xue-Jie, GAO Hong-Fang. Magnetic properties of turbidites in the Huatung Basin and their environmental implications[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(9): 3330-3342, doi: 10.6038/cjg20160917
Citation: LI Bo, WANG Yan, ZHONG He-Xian, ZHANG Jiang-Yong, LI Shun, LI Xue-Jie, GAO Hong-Fang. Magnetic properties of turbidites in the Huatung Basin and their environmental implications[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(9): 3330-3342, doi: 10.6038/cjg20160917

花东海盆浊流沉积的磁性特征及其环境意义

详细信息
    作者简介:

    李波,男,1986年生,博士,工程师,主要从事海洋区域地质调查和研究工作.E-mail:libo_cug@163.com

  • 中图分类号: P736

Magnetic properties of turbidites in the Huatung Basin and their environmental implications

  • 对取自台湾以东花东海盆GX168孔的浊流沉积物进行系统的岩石磁学研究,揭示其沉积学和岩石磁学特征,分析其物源和形成机制.研究结果显示,剖面上共识别出12层浊流沉积物,其分布存在规律,下部350~700 cm共发育11层浊流沉积物,而0~350 cm仅出现1层浊流沉积物.浊流沉积物粒径明显较背景沉积物粗,石英、长石含量更高,底部与下伏背景沉积呈突变接触,顶部与上覆背景沉积呈渐变接触,内部发育典型的正粒序韵律结构.浊流沉积物和背景沉积物具有相似的磁学特征,两者均以磁铁矿为主要载磁矿物类型,且磁铁矿颗粒均以准单畴和多畴颗粒为主.同时,两者也存在一定差异,浊流沉积物中磁铁矿较背景沉积物更为富集,磁化率和饱和等温剩磁更强,磁铁矿粒径更粗,这与浊流沉积物原始沉积区更靠近物源区有关.花东海盆浊流沉积形成的诱发机制可能是末次冰期以来频发的海平面波动造成陆坡之上沉积物重力失稳,导致陆坡沉积物向海盆搬运.
  • 加载中
  • [1]

    Anchuela Ó P, Casas-Sainz A M, Juan A P, et al. 2011. Lithology-dependent reliability of AMS analysis:A case study of the Eocene turbidities in the southern Pyrenees (Aragón, Spain). Comptes Rendus Geoscience, 343(1):11-19, doi:10.1016/j.crte.2010.11.003.

    [2]

    Arai K, Naruse H, Miura R, et al. 2013. Tsunami-generated turbidity current of the 2011 Tohoku-Oki earthquake. Geology, 41(11):1195-1198, doi:10.1130/G34777.1.

    [3]

    Becker J J, Sandwell D T, Smith W H F, et al. 2009. Global bathymetry and elevation data at 30 arc seconds resolution:SRTM30_PLUS. Marine Geodesy, 32(4):355-371.

    [4]

    Bridge J S, Demicco R V. 2008. Earth Surface Processes, Landforms and Sediment Deposits. Cambridge:Cambridge University Press.

    [5]

    Dang H W, Jian Z M, Bassinot F. 2009. Turidite deposition of the Last Glacial Stage in the Western Philippine Sea and its paleoenvironmental implications. Quaternary Sciences (in Chinese), 29(6):1078-1085, doi:10.3969/j.issn.1001-7410.2009.06.09.

    [6]

    Dankers P. 1981. Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite. Geophysical Journal International, 64(2):447-461, doi:10.1111/j.1365-246X.1981.tb02676.x.

    [7]

    Day R, Fuller M, Schmidt V A. 1977. Hysteresis properties of titanomagnetites:Grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13(4):260-267, doi:10.1016/0031-9201(77)90108-X.

    [8]

    Dunlop D J, Özdemir Ö. 1997. Rock Magnetism:Fundamentals and Frontiers. Cambridge:Cambridge University Press.

    [9]

    Dunlop D J. 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107(B3):2056, doi:10.1029/2001JB000486.

    [10]

    Ellwood B B, Brett C E, Macdonald W D. 2007. Magnetostratigraphy susceptibility of the Upper Ordovician Kope Formation,Northern Kentucky. Palaeogeography, Palaeoclimatology, Palaeoecology, 243(1-2):42-54, doi:10.1016/j.palaeo.2006.07.003.

    [11]

    Evans M E, Heller F. 2003. Environmental Magnetism:Principles and Applications of Enviromagnetics. London:Academic Press.

    [12]

    Fairbanks R G. 1989. A 17,000-year glacio-eustatic sea level record:Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342(6250):637-642, doi:10.1038/342637a0.

    [13]

    Fang A M, Li J L, Hou Q L. 1998. Sedimentation of turbidity currents and relative gravity flows:A review. Geological Review (in Chinese), 44(3):270-280.

    [14]

    Fang X Y. 2014. The time-space symmetry and the tendency judgment Ms≥7.0 earthquake in Philippines. Journal of Northwest Normal University (Natural Science) (in Chinese), 50(1):110-114.

    [15]

    Fassbinder J W E, Stanjek H. 1994. Magnetic properties of biogenic soil greigite (Fe3S4). Geophysical Research Letters, 21(22):2349-2352, doi:10.1029/94GL02506.

    [16]

    Folk R L, Andrews P B, Lewis D W. 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics, 13(4):937-968, doi:10.1080/00288306.1970.10418211.

    [17]

    Gao H C, Zheng R C, Wei Q L, et al. 2012. Reviews on fluid properties and sedimentary characteristics of debris flows and turbidity currents. Advances in Earth Science (in Chinese), 2012, 27(8):815-827.

    [18]

    Ge S L, Shi X F, Liu Y G, et al. 2012. Turbidite and bottom-current evolution revealed by anisotropy of magnetic susceptibility of redox sediments in the Ulleung Basin, Sea of Japan. Chinese Science Bulletin, 57(6):660-672.

    [19]

    Gong J M, Zhang L, Chen J W, et al. 2005. A favorable reservoir for gas hydrate found in ODP Leg 204:Turbidite. Geoscience (in Chinese), 19(1):21-25, doi:10.3969/j.issn.1000-8527.2005.01.003.

    [20]

    Hanebuth T, Stattegger K, Grootes P M. 2000. Rapid flooding of the sunda shelf:A late-glacial sea-level record. Science, 288(5468):1033-1035, doi:10.1126/science.288.5468.1033.

    [21]

    Hrouda F. 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International, 118(3):604-612, doi:10.1111/j.1365-246X.1994.tb03987.x.

    [22]

    Hsu S K, Kuo J, Lo C L, et al. 2008. Turbidity currents, submarine landslides and the 2006 Pingtung Earthquake off SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6):767-772.

    [23]

    Huang H Q, Imran J, Pirmez C. 2012. The depositional characteristics of turbidity currents in submarine sinuous channels. Marine Geology, 329-331:93-102, doi:10.1016/j.margeo.2012.08.003.

    [24]

    Jiang H. 2010. Dynamical mechanism and depositional responses of turbidity current sedimentation. Oil & Gas Geology (in Chinese), 31(4):428-435.

    [25]

    King J, Banerjee S K, Marvin J, et al. 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials:Some results from lake sediments. Earth and Planetary Science Letters, 59(2):404-419, doi:10.1016/0012-821X(82)90142-X.

    [26]

    Kneller B, Buckee C. 2000. The structure and fluid mechanics of turbidity currents:A review of some recent studies and their geological implications. Sedimentology, 47:62-94, doi:10.1046/j.1365-3091.2000.047s1062.x.

    [27]

    Kumar A A, Rao V P, Patil S K, et al. 2005. Rock magnetic records of the sediments of the eastern Arabian Sea:Evidence for late Quaternary climatic change. Marine Geology, 220(1-4):59-82, doi:10.1016/j.margeo.2005.06.038.

    [28]

    Lee H J, Chough S K, Yoon S H. 1996. Slope-stability change from late Pleistocene to Holocene in the Ulleung Basin, East Sea (Japan Sea). Sedimentary Geology, 104(1-4):39-51, doi:10.1016/0037-0738(95)00119-0.

    [29]

    Li J, Gao S, Sun Y B. 2005. Grain-size characteristics of turbidite sediments in core A23 from the Southern Okinawa Trough. Marine Geology & Quaternary Geology (in Chinese), 25(2):11-16.

    [30]

    Li J S, Song X L, Sun Y L, et al. 1999. The magnetic susceptibility measurements of turbidity current sediments from Fuxian-Lake of Yunnan Province, China and their correlations with earthquakes. Acta Seismologica Sinica (in Chinese), 21(1):83-88.

    [31]

    Liu Q S, Deng C L, Yu Y, et al. 2005. Temperature dependence of magnetic susceptibility in an argon environment:implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 161(1):102-112, doi:10.1111/j.1365-246X.2005.02564.x.

    [32]

    Liu Q S, Deng C L. 2009. Magnetic susceptibility and its environmental significances. Chinese Journal of Geophysics (in Chinese), 52(4):1041-1048, doi:10.3969/j.issn.0001-5733.2009.04.021.

    [33]

    Liu Q S, Roberts A P, Larrasoaña J C, et al. 2012. Environmental magnetism:Principles and applications. Reviews of Geophysics, 50(4):RG4002, doi:10.1029/2012RG000393.

    [34]

    Lowrie W. 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17(2):159-162, doi:10.1029/GL017i002p00159.

    [35]

    Maher B A. 2007. Environmental magnetism and climate change.Contemporary Physics, 48(5):247-274, doi:10.1080/00107510801889726.

    [36]

    Maher B A. 2011. The magnetic properties of Quaternary aeolian dusts and sediments, and their palaeoclimatic significance. Aeolian Research, 3(2):87-144, doi:10.1016/j.aeolia.2011.01.005.

    [37]

    Meng Q Y, Li A C. 2008. Brief reviews on environmental magnetism in marine sediment. Marine Environmental Science (in Chinese), 27(1):86-90.

    [38]

    Mulder T, Syvitski J P M. 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3):285-299.

    [39]

    Oldfield F. 1994. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments. Journal of Geophysical Research, 99(B5):9045-9050, doi:10.1029/93JB03137.

    [40]

    Ouyang T P, Tian C J, Zhu Z Y, et al. 2014. Magnetic characteristics andits environmental implications of core YSJD-86GC sediments from the southern South China Sea. Chinese Science Bulletin, 59(25):3176-3187.

    [41]

    Peters C, Austin W E N, Walden J, et al. 2010. Magnetic characterisation and correlation of a Younger Dryas tephra in North Atlantic marine sediments. Journal of Quaternary Science, 25(3):339-347, doi:10.1002/jqs.1320.

    [42]

    Peters C, Dekkers M J. 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Physics and Chemistry of the Earth, 28(16-19):659-667, doi:10.1016/S1474-7065(03)00120-7.

    [43]

    Qiu X H, Li T G, Chang F M, et al. 2012. Turbidite deposition record and its mechanism since 150 kaBP in Western Philippine Sea. Marine Geology & Quaternary Geology (in Chinese), 32(4):157-163.

    [44]

    Rothwell R G, Thomson J, Kähler G. 1998. Low-sea-level emplacement of a very large Late Pleistocene ‘megaturbidite’ in the western Mediterranean Sea. Nature, 392(6674):377-380, doi:10.1038/32871.

    [45]

    Schneider J, Harb G, Badura H. 2012. Turbidity currents in reservoirs.//Bengtsson L, Herschy R W, Fairbridge R W eds. Encyclopedia of Lakes and Reservoirs. Netherlands:Springer, 820-826.

    [46]

    Shanmugam G. 1997. The Bouma Sequence and the turbidite mind set. Earth-Science Reviews, 42(4):201-229, doi:10.1016/S0012-8252(97)81858-2.

    [47]

    Shanmugam G. 2000. 50 years of the turbidite paradigm (1950s-1990s):Deep-water processes and facies models-a critical perspective. Marine and Petroleum Geology, 17(2):285-342, doi:10.1016/S0264-8172(99)00011-2.

    [48]

    Siddall M, Rohling E J, Almogi-Labin A, et al. 2003. Sea-level fluctuations during the last glacial cycle. Nature, 423(6942):853-858, doi:10.1038/nature01690.

    [49]

    Smith W H F, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334):1956-1962, doi:10.1126/science.277.5334.1956.

    [50]

    Thompson R, Oldfield F. 1986. Environmental Magnetism. London:Allen and Unwin.

    [51]

    Wang D P. 1991. The sedimentation and formation mechanism of lacustrine endogenic debris flow. Acta Geologica Sinica (in Chinese), 65(4):299-316.

    [52]

    Watkins S J, Maher B A. 2003. Magnetic characterisation of present-day deep-sea sediments and sources in the North Atlantic. Earth and Planetary Science Letters, 214(3-4):379-394, doi:10.1016/S0012-821X(03)00422-9.

    [53]

    Xu J P. 2013. Accomplishments and challenges in measuring turbidity currents in submarine canyons. Advances in Earth Science (in Chinese), 2013, 28(5):552-558.

    [54]

    Xu J P. 2014. Turbidity current research in the past century:An overview. Periodical of Ocean University of China (in Chinese), 44(10):98-105.

    [55]

    Xu X W, Qiang X K, Fu C F, et al. 2012. Characteristics of frequency-dependent magnetic susceptibility in Bartington MS2 and Kappabridge MFK1-FA, and its application in loess-paleosol, red clay and lacustrine sediments. Chinese J. Geophys. (in Chinese), 55(1):197-206, 10.6038/j.issn.0001-5733.2012.01.019.

    [56]

    Yang X Q, Grapes R, Zhou H Y, et al. 2008. Magnetic properties of sediments from the Pearl River Delta, South China:Paleoenvironmental implications. Science in China Series D:Earth Sciences, 51(1):56-66.

    [57]

    Zhang F Y, Zhang W Y, Zhang X Y, et al. 2012. Key technique and scheme of classification and nomenclature for deep sea sediments. Earth Science-Journal of China University of Geosciences (in Chinese), 37(1):93-104, doi:10.3799/dqkx.2012.009.

    [58]

    Zhao Y L, Liu Z F, Colin C, et al. 2011. Turbidite deposition in the southern South China Sea during the last glacial:Evidence from grain-size and major elements records. Chinese Science Bulletin, 56(33):3558-3565.

    [59]

    党皓文, 翦知湣, Bassinot F. 2009. 西菲律宾海末次冰期以来的浊流沉积及其古环境意义. 第四纪研究, 29(6):1078-1085, doi:10.3969/j.issn.1001-7410.2009.06.09.

    [60]

    方爱民, 李继亮, 侯泉林. 1998. 浊流及相关重力流沉积研究综述. 地质论评, 44(3):270-280.

    [61]

    方兴义. 2014. 菲律宾Ms≥7.0地震时空对称性及趋势判断. 西北师范大学学报(自然科学版), 50(1):110-114.

    [62]

    高红灿, 郑荣才, 魏钦廉等. 2012. 碎屑流与浊流的流体性质及沉积特征研究进展. 地球科学进展, 27(8):815-827.

    [63]

    葛淑兰, 石学法, 刘焱光等. 2012. 磁化率各向异性揭示的日本海Ulleung盆地浊流沉积和氧化-还原条件下的底流演化. 科学通报, 56(36):3098-3110.

    [64]

    龚建明, 张莉, 陈建文等. 2005. ODP 204航次天然气水合物的可能有利储层——浊积层. 现代地质, 19(1):21-25, doi:10.3969/j.issn.1000-8527.2005.01.003.

    [65]

    姜辉. 2010. 浊流沉积的动力学机制与响应. 石油与天然气地质, 31(4):428-435.

    [66]

    李军, 高抒, 孙有斌. 2005. 冲绳海槽南部A23孔浊流沉积层的粒度特征. 海洋地质与第四纪地质, 25(2):11-16.

    [67]

    李杰森, 宋学良, 孙应伦等. 1999. 云南抚仙湖现代浊流沉积物的磁化率测定及与地震相关性分析. 地震学报, 21(1):83-88.

    [68]

    刘青松, 邓成龙. 2009. 磁化率及其环境意义. 地球物理学报, 52(4):1041-1048, doi:10.3969/j.issn.0001-5733.2009.04.021.

    [69]

    孟庆勇, 李安春. 2008. 海洋沉积物的环境磁学研究简述. 海洋环境科学, 27(1):86-90.

    [70]

    欧阳婷萍, 田成静, 朱照宇等. 2014. 南海南部YSJD-86GC孔沉积物磁性特征及其环境意义. 科学通报, 59(19):1881-1891.

    [71]

    仇晓华, 李铁刚, 常凤鸣等. 2012. 西菲律宾海15万年以来的浊流沉积及其成因. 海洋地质与第四纪地质, 32(4):157-163.

    [72]

    王德坪. 1991. 湖相内成碎屑流的沉积及形成机理. 地质学报, 65(4):299-316.

    [73]

    徐景平. 2013. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战. 地球科学进展, 28(5):552-558.

    [74]

    徐景平. 2014. 海底浊流研究百年回顾. 中国海洋大学学报, 44(10):98-105.

    [75]

    徐新文, 强小科, 符超峰等. 2012. Bartington MS2和Kappabridge MFK1-FA不同频率的磁化率在黄土、红粘土和湖相沉积物中的应用. 地球物理学报, 55(1):197-206, 10.6038/j.issn.0001-5733.2012.01.019.

    [76]

    杨小强, Grapes R, 周厚云等. 2007. 珠江三角洲沉积物的岩石磁学性质及其环境意义. 中国科学 D辑:地球科学, 37(11):1493-1503.

    [77]

    张富元, 章伟艳, 张霄宇等. 2012. 深海沉积物分类与命名的关键技术和方案. 地球科学-中国地质大学学报, 37(1):93-104, doi:10.3799/dqkx.2012.009.

    [78]

    赵玉龙, 刘志飞, Colin C等. 2011. 南海南部末次冰期浊流沉积的高分辨率沉积学和地球化学研究. 科学通报, 56(31):2535-2543.

  • 加载中
计量
  • 文章访问数:  1891
  • PDF下载数:  1769
  • 施引文献:  0
出版历程
收稿日期:  2016-04-28
修回日期:  2016-06-16
上线日期:  2016-09-05

目录