地震触发研究中库仑应力随摩擦系数增加而增大的矛盾及其解决

朱守彪, 缪淼. 地震触发研究中库仑应力随摩擦系数增加而增大的矛盾及其解决[J]. 地球物理学报, 2016, 59(1): 169-173, doi: 10.6038/cjg20160114
引用本文: 朱守彪, 缪淼. 地震触发研究中库仑应力随摩擦系数增加而增大的矛盾及其解决[J]. 地球物理学报, 2016, 59(1): 169-173, doi: 10.6038/cjg20160114
ZHU Shou-Biao, MIAO Miao. On the study of earthquake triggering:Solution to paradox that Coulomb stresses increase with frictional coefficients[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(1): 169-173, doi: 10.6038/cjg20160114
Citation: ZHU Shou-Biao, MIAO Miao. On the study of earthquake triggering:Solution to paradox that Coulomb stresses increase with frictional coefficients[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(1): 169-173, doi: 10.6038/cjg20160114

地震触发研究中库仑应力随摩擦系数增加而增大的矛盾及其解决

详细信息
    作者简介:

    朱守彪,男,1964年生,研究员,理学博士.主要从事地球动力学及地震活动性研究.E-mail:zhushoubiao@gmail.com

  • 中图分类号: P315

On the study of earthquake triggering:Solution to paradox that Coulomb stresses increase with frictional coefficients

  • 近年来,通过计算库仑破裂应力变化研究地震触发及断层的相互作用,进而估计地震灾害已经成为国际上研究的热点.研究中,为考察库仑模型触发地震的效果,计算时往往要改变模型参数进行检验,特别是让有效摩擦系数从0.0到0.8之间变化.许多研究人员的计算结果表明,库仑破裂应力随着摩擦系数的增加而增大,即断层上摩擦系数的增大可以导致触发地震能力的提高.这显然与我们的常识相违背:摩擦总是阻碍断层滑动、抑制地震发生的,即断层面上的摩擦越大,地震越是难以被触发.文中通过对库仑破裂应力的计算公式进行详细分析后发现,之所以出现摩擦越大,地震越容易被触发的现象,其原因是研究者在计算中没有考虑在构造应力作用的环境里,摩擦系数本身的变化所带来的附加库仑应力变化.若某个地震使一个位于地下15 km的典型断层面上的正应力增加2 MPa,如果只考虑静岩压力,当摩擦系数从0.3增大到0.4后,传统库仑破裂应力变化为0.8 MPa;而综合库仑应力变化则大约为-39.2 MPa.所以,若从整体上来分析断层在地震位错及摩擦系数变化所造成的综合库仑应力改变,就不可能出现库仑应力随摩擦系数增加而增加的不正常现象.由此可见,今后在利用库仑模型研究地震触发问题时,应综合考虑构造应力场及摩擦系数本身变化所带来的库仑应力变化.
  • 加载中
  • [1]

    Bilek S L, Lithgow-Bertelloni C L. 2005. Stress changes in the Costa Rica subduction zone due to the 1999Mw=6.9 Quepos earthquake. Earth Planet. Sci. Lett., 230(1-2):97-112.

    [2]

    Deng J S, Sykes L R. 1997. Evolution of the stress field in southern California and triggering of moderate-size earthquakes:A 200-year perspective. J. Geophys. Res., 102(B5):9859-9886.

    [3]

    Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer. Nature, 411(6834):180-183.

    [4]

    Freed A M. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci.,33:335-367.

    [5]

    Gahalaut K, Gahalaut V K. 2008. Stress triggering of normal aftershocks due to strike slip earthquakes in compressive regime. Journal of Asian Earth Sciences, 33(5-6):379-382.

    [6]

    Harris R A, Simpson R W. 1992. Changes in static stress on southern California faults after the 1992 Landers earthquake. Nature, 360(6401):251-254.

    [7]

    Harris R A, Simpson R W, Reasenberg P A. 1995. Influence of static stress changes on earthquake locations in southern California. Nature, 375(6528):221-224.

    [8]

    Harris R A. 1998. Introduction to special section:Stress triggers, stress shadows, and implications for seismic hazard. Journal of Geophysical Research:Solid Earth(1978-2012), 103(B10):24347-24358.

    [9]

    King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3):935-953.

    [10]

    King G C P, Cocco M. 2001. Fault interaction by elastic stress changes:New clues from earthquake sequences. Advances in Geophysics, 44:1-38, I-VIII1-36.

    [11]

    Miao M, Zhu S B. 2012. A study of the impact of static Coulomb stress changes of megathrust earthquakes along subduction zone on the following aftershocks. Chinese J. Geophys.(in Chinese), 55(9):2982-2993, doi:10.6038/j.issn.0001-5733.2012.09.017.

    [12]

    Miao M, Zhu S B. 2013. The static Coulomb stress change of the 2013 Lushan Ms7.0 earthquake and its impact on the spatial distribution of aftershocks. Acta Seismologica Sinica(in Chinese), 35(5):619-631.

    [13]

    Nostro C, Cocco M, Belardinelli M E. 1997. Static stress changes in extensional regimes:an application to southern Apennines(Italy). Bulletin of the Seismological Society of America, 87(1):234-248.

    [14]

    Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4):1135-1154.

    [15]

    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2):1018-1040.

    [16]

    Parsons T, Stein R S, Simpson R W, Reasenberg P Aet al. 1999. Stress sensitivity of fault seismicity:A comparison between limited-offset oblique and major strike-slip faults. Journal of Geophysical Research:Solid Earth(1978-2012), 104(B9):20183-20202.

    [17]

    Parsons T, Ji C, Kirby E. 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 454(7203):509-510.

    [18]

    Reasenberg P A, Simpson R W. 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science, 255(5052), 1687-1690.

    [19]

    Shi Y L. 2001. Stress triggers and stress shadows:How to apply these concepts to earthquake prediction. Earthquake(in Chinese)., 21(3):1-7.

    [20]

    Simpson R W, Reasenberg P A. 1994. Earthquake-induced static stress changes on central California faults.//Simpson R W ed. The Loma Prieta, California Earthquake of October 17, 1989-Tectonic Processes and Models. U S Geol Surv Prof Pap, 55-89.

    [21]

    Stein R S, Barka A A, Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3):594-604.

    [22]

    Stein R S. 1999. The role of stress transfer in earthquake occurrence. Nature, 402(6762):605-609.

    [23]

    Toda S, Lin J, Meghraoui M, Stein R Set al. 2008. 12 May 2008M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys. Res. Lett., 35(17):L17305.

    [24]

    Toda S, Lin J, Stein R S. 2011. Using the 2011Mw=9.0 off the Pacific coast of Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure. Earth, Planets and Space, 63(7):725-730.

    [25]

    Wan Y G, Wu Z L, Zhou G W, Huang Jet al. 2000. "Stress triggering" between different rupture events in several earthquakes. Acta Seismologica Sinica(in Chinese), 2000, 22(6):568-576.

    [26]

    Zhang Z Q, Chen J Y S, Lin J. 2008. Stress interactions between normal faults and adjacent strike-slip faults in of 1997 Jiashi earthquake group 1997 swarm. Sci. China Earth Sci., 3851(3):334431-342440.

    [27]

    Zhu S B, Miao M. 2015. How did the 2013 Lushan earthquake(Ms=7.0) trigger its aftershocks? Insights from static Coulomb stress changes calculations. Pure and Applied Geophysics, 172(10):2481-2494.

    [28]

    缪淼, 朱守彪. 2012. 俯冲带上特大地震静态库仑应力变化对后续余震触发效果的研究. 地球物理学报, 55(9),:2982-2993, doi:10.6038/j.issn.0001-5733.2012.09.017.

    [29]

    缪淼, 朱守彪. 2013. 2013年芦山Ms7.0地震产生的静态库仑应力变化及其对余震空间分布的影响. 地震学报, 35(5):619-631.

    [30]

    石耀霖. 2001. 关于应力触发和应力影概念在地震预报中应用的一些思考. 地震, 21(3):1-7.

    [31]

    万永革, 吴忠良, 周公威等. 2000. 几次复杂地震中不同破裂事件之间的"应力触发"问题. 地震学报, 22(6):568-576.

    [32]

    张竹琪, 陈永顺, 林间. 2008. 1997年伽师震群中相邻正断层和走滑断层之间相互应力作用. 中国科学:D辑, 38(3):334-342.

  • 加载中
计量
  • 文章访问数:  2156
  • PDF下载数:  1893
  • 施引文献:  0
出版历程
收稿日期:  2014-09-18
修回日期:  2015-09-15
上线日期:  2016-01-05

目录