含有倾斜薄裂缝孔隙地层中的井孔声场

阎守国, 谢馥励, 龚丹, 章成广, 张碧星. 含有倾斜薄裂缝孔隙地层中的井孔声场[J]. 地球物理学报, 2015, 58(1): 307-317, doi: 10.6038/cjg20150128
引用本文: 阎守国, 谢馥励, 龚丹, 章成广, 张碧星. 含有倾斜薄裂缝孔隙地层中的井孔声场[J]. 地球物理学报, 2015, 58(1): 307-317, doi: 10.6038/cjg20150128
YAN Shou-Guo, XIE Fu-Li, GONG Dan, ZHANG Cheng-Guang, ZHANG Bi-Xing. Borehole acoustic fields in porous formation with tilted thin fracture[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(1): 307-317, doi: 10.6038/cjg20150128
Citation: YAN Shou-Guo, XIE Fu-Li, GONG Dan, ZHANG Cheng-Guang, ZHANG Bi-Xing. Borehole acoustic fields in porous formation with tilted thin fracture[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(1): 307-317, doi: 10.6038/cjg20150128

含有倾斜薄裂缝孔隙地层中的井孔声场

详细信息
    作者简介:

    阎守国,男,1981年生,博士,研究方向为声波测井理论及应用,分层介质中声波的传播及成像.E-mail:yanshouguo@mail.ioa.ac.cn

  • 中图分类号: P631

Borehole acoustic fields in porous formation with tilted thin fracture

  • 应用三维交错网格应力-速度有限差分方法,数值模拟了含有倾斜裂缝孔隙介质地层中点声源所激发的井孔声场问题.为满足薄裂缝计算需求,开发了不均匀网格有限差分算法,提高了计算精度及计算速度.利用将孔隙介质方程参数取为流体极限的办法来处理裂缝中的流体,实现了流体-孔隙介质界面处的差分方程统一,使界面处的计算更加灵活方便.在验证了方法正确性的基础上,分别考察了单裂缝宽度、裂缝带宽度、裂缝倾斜角度以及孔隙介质渗透率等参数的变化对井轴上阵列波形的影响并进行了分析.结果表明,声波经过裂缝时可能产生反射横波及斯通利波,后者随裂缝宽度的减小而减小,而前者随裂缝宽度的改变,变化不大,在裂缝很小(20 μm)时依然存在;裂缝带的宽度、密度越大,反射斯通利波越强;当裂缝(裂缝带)倾斜时,反射横波消失,但反射斯通利波受裂缝倾斜角度的影响较小;渗透率的改变对斯通利波的衰减影响较为明显.
  • 加载中
  • [1]

    Bakku S K, Fehler M, Burns D. 2013. Fracture compliance estimation using borehole tube waves. Geophysics, 78(4): D249-D260.

    [2]

    Biot M A. 1955. Theory of elasticity and consolidation for a porous anisotropic solid. J. Apply. Physica, 26(2), doi: 10.1063/1.1721956.

    [3]

    Biot M A. 1956. Theory of deformation of a porous viscoelastic anisotropic solid. Journal of Applied Physics, 27(5), doi: 10.1063/1.1722402.

    [4]

    Biot M A. 1962a. Mechanics of deformation and acoustic propagation in porous media. J. Apply. Physica, 33(4), doi: 10.1063/1.1728759.

    [5]

    Biot M A. 1962b. Generalized theory of acoustic propagation in porous dissipative media. The Journal of the Acoustical Society of America, 34(9):1254-1264.

    [6]

    Chen D H, Cong J S, Xu D L, et al. 2004. The simulation of borehole field in fractural formation. Journal of Daqing Petroleum Institute, 28(3): 4-6, 13, 116.

    [7]

    Cheng N Y, Cheng C H, Toksöz M N. 1995. Borehole wave propagation in three dimensions. J. Acoust. Soc. Am, 97(6): 3483-3493.

    [8]

    Cong J S. 2004. Simulated for the acoustic field of the layer and fractures in and outside of a borehole using finite difference method [Master thesis]. Daqing: Daqing Petroleum Institute.

    [9]

    Derov A, Maximov G, Lazarkov M, et al. 2009. Characterizing hydraulic fractures using slow waves in the fracture and tube waves in the borehole. 2009 SEG Annual Meeting, 4115-4119

    [10]

    Guan W, Hu H S, He X. 2009. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation. J. Acoust. Soc. Am, 125(4): 1942-1950.

    [11]

    Hornby B E, Johnson D L, Winkler K W, et al. 1989. Fracture evaluation using reflected Stoneley-wave arrivals. Geophysics, 54(10): 1274-1288.

    [12]

    Kostek S, Johnson D L, Randall C J. 1998. The interaction of tube waves with borehole fractures. PartⅠ: Numerical models. Geophysics, 63(3): 800-808.

    [13]

    Leslie H D, Randall C J. 1992. Multipole sources in boreholes penetrating anisotropic formations: Numerical and experimental results. J. Acoust. Soc. Am., 91(1): 12-17.

    [14]

    Lin W J, Wang X M, Zhang H L. 2006. Acoustic wave propagation in a borehole penetrating an inclined layered formation. Chinese J. Geophys. (in Chinese), 49(1): 284-294, doi: 10.3321/j.issn:0001-5733.2006.01.036.

    [15]

    Matuszyk P J, Torres-Verdín C, Pardo D. 2013. Frequency-domain finite-element simulations of 2D sonic wireline borehole measurements acquired in fractured and thinly bedded formations. Geophysics, 78(4): D193-D207.

    [16]

    Sinha B K, Şimşek E, Liu Q H. 2006. Elastic-wave propagation in deviated wells in anisotropic formations. Geophysics, 71(6): D191-D202.

    [17]

    Spring C T, Dudley D G. 1992. Acoustic-wave propagation in a cylindrical borehole with fractures. J. Acoust. Soc. Am., 91(2): 658-669.

    [18]

    Sun W T, Yang H Z. 2004. A3-D finite difference method using irregular grids for elastic wave propagation in anisotropic media. Chinese J. Geophys. (in Chinese), 47(2): 332-337, doi: 10.3321/j.issn:0001-5733.2004.02.022.

    [19]

    Tang X M. 1990. Acoustic logging in fractured and porous formations[Ph. D. thesis]. Cambridge: Massachusetts Institute of Technology.

    [20]

    Tang X M, Cheng C H. 1993. Borehole stoneley wave propagation across permeable structures 1. Geophysical Prospecting, 41(2): 165-187.

    [21]

    Wang X M, Zhang H L, Wang D. 2003. Modelling of seismic wave propagation in heterogeneous poroelastic media using a high-order staggered finite-difference method. Chinese J. Geophys. (in Chinese), 46(6): 842-849.

    [22]

    Yan S G, Song R L, Lü W G, et al. 2011. Numerical simulation of acoustic fields excited by cross-dipole source in deviated wells in transversely isotropic formation. Chinese J. Geophys. (in Chinese), 54(9): 2412-2418, doi: 10.3969/j.issn.0001-5733.2011.09.025.

    [23]

    Zhang L X, Fu L Y, Pei Z L. 2010. Finite difference modeling of Biot's Poroelastic equations with unsplit convolutional PML and rotated staggered grid. Chinese J. Geophys. (in Chinese), 53(10): 2470-2483, doi: 10.3969/j.issn.0001-5733.2010.10.021.

  • 加载中
计量
  • 文章访问数:  1495
  • PDF下载数:  1579
  • 施引文献:  0
出版历程
收稿日期:  2013-08-15
修回日期:  2014-11-30
上线日期:  2015-01-20

目录