西南印度洋脊中段Indomed-Gallieni洋中脊岩浆-构造动力模式

梁裕扬, 李家彪, 李守军, 倪建宇, 阮爱国. 西南印度洋脊中段Indomed-Gallieni洋中脊岩浆-构造动力模式[J]. 地球物理学报, 2014, 57(9): 2993-3005, doi: 10.6038/cjg20140924
引用本文: 梁裕扬, 李家彪, 李守军, 倪建宇, 阮爱国. 西南印度洋脊中段Indomed-Gallieni洋中脊岩浆-构造动力模式[J]. 地球物理学报, 2014, 57(9): 2993-3005, doi: 10.6038/cjg20140924
LIANG Yu-Yang, LI Jia-Biao, LI Shou-Jun, NI Jian-Yu, RUAN Ai-Guo. The Magmato-tectonic dynamic model for the Indomed-Gallieni segment of the central southwest Indian ridge[J]. Chinese Journal of Geophysics (in Chinese), 2014, 57(9): 2993-3005, doi: 10.6038/cjg20140924
Citation: LIANG Yu-Yang, LI Jia-Biao, LI Shou-Jun, NI Jian-Yu, RUAN Ai-Guo. The Magmato-tectonic dynamic model for the Indomed-Gallieni segment of the central southwest Indian ridge[J]. Chinese Journal of Geophysics (in Chinese), 2014, 57(9): 2993-3005, doi: 10.6038/cjg20140924

西南印度洋脊中段Indomed-Gallieni洋中脊岩浆-构造动力模式

详细信息
    作者简介:

    梁裕扬,男,1985年生,助理研究员,海洋地球物理与构造地质学专业.E-mail:liangyy2012@gmail.com

  • 中图分类号: P738

The Magmato-tectonic dynamic model for the Indomed-Gallieni segment of the central southwest Indian ridge

  • 利用西南印度洋脊中段Indomed-Gallieni洋段49—51°E区段全覆盖高分辨率多波束水深地形资料,应用构造地貌学分析方法,结合区域地形及其他地球物理等资料,在分段分析49—51°E区段岩浆-构造动力学模式的基础上,进一步探讨了约10 Ma以来Indomed-Gallieni洋段的演化史.28、29洋段目前岩浆供应不足,在轴部不对称深断层的控制之下不对称扩张,属于超慢速扩张洋脊较常见的演化方式.轴部火山建造主要向北翼增生,发育与火山脊相关的火山地貌;南翼构造拉张作用强烈,地貌上可观察到大量断块,拆离断层可能大量存在.而27洋段水深浅、火山密集、轴部缺失裂谷,超慢速扩张下却具有较高的岩浆通量.Indomed-Gallieni洋段地形高地建造于一次岩浆增强事件,但应该不是因为Crozet热点的影响.27洋段为目前仍受该岩浆增强事件影响的唯一区段,但其强度和规模也在逐渐减小;包括28、29洋段在内的Indomed-Gallieni段其他部分,已重新恢复到岩浆供应不足的正常超慢速扩张洋脊演化模式.28、29洋段和27洋段岩浆供应均存在岩浆通量由多至少的周期,周期内岩浆供应较多时期轴部建脊,减少时期轴部火山建造裂离.但27洋段由于仍受岩浆增强事件的影响,与28、29洋段表现形式不同,主要表现为火山建造裂离方式、岩浆供应周期长短以及构造活动强烈程度的不同.
  • 加载中
  • [1]

    Breton T, Nauret F, Pichat S, et al. 2013. Geochemical heterogeneities within the Crozet hotspot. Earth and Planetary Science Letters, 376: 126-136.

    [2]

    Buck W R. 1988. Flexural rotation of normal faults. Tectonics, 7(5): 959-973.

    [3]

    Cann J R, Blackman D K, Smith D K, et al. 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature, 385(6614): 329-332.

    [4]

    Cannat M, Rommevaux-Jestin C, Fujimoto H. 2003. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochemistry, Geophysics, Geosystems, 4(8), doi: 10.1029/2002GC000480.

    [5]

    Cannat M, Rommevaux-Jestin C, Sauter D, et al. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research: Solid Earth (1978—2012), 104(B10): 22825-22843.

    [6]

    Cannat M, Sauter D, Bezos A, et al. 2008. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 9(4), doi: 10.1029/2007GC001676.

    [7]

    Cannat M, Sauter D, Mendel V, et al. 2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34(7): 605-608.

    [8]

    Chen Y J. 1992. Oceanic crustal thickness versus spreading rate. Geophysical Research Letters, 19(8): 753-756.

    [9]

    Debayle E, Kennett B, Priestley K. 2005. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature, 433(7025): 509-512.

    [10]

    Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405-412.

    [11]

    Font L, Murton B J, Roberts S, et al. 2007. Variations in melt productivity and melting conditions along SWIR (70° E~49° E): Evidence from olivine-hosted and plagioclase-hosted melt inclusions. Journal of Petrology, 48(8): 1471-1494.

    [12]

    Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets. Earth and Planetary Science Letters, 187(3): 283-300.

    [13]

    Grevemeyer I. 1996. Hotspot-ridge interaction in the Indian Ocean: constraints from Geosat/ERM altimetry. Geophysical Journal International, 126(3): 796-804.

    [14]

    Li J. 1999. Multibeam Sounding Princaples Survey Technologies and Data Processing Methods. Beijing: Ocean Press.

    [15]

    Liang Y Y, Li J B, Li S J, et al. 2013.The morphotectonics and its evolutionary dynamics of the central Southwest Indian Ridge (49° to 51°E). Acta Oceanologica Sinica, 32(12): 87-95.

    [16]

    Maia M, Ackermand D, Dehghani G A, et al. 2000. The Pacific-Antarctic Ridge-Foundation hotspot interaction: a case study of a ridge approaching a hotspot. Marine Geology, 167(1-2): 61-84.

    [17]

    Mendel V, Sauter D, Rommevaux-Jestin C, et al. 2003. Magmato-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge: Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern. Geochemistry, Geophysics, Geosystems, 4(5), doi: 10.1029/2002GC000417.

    [18]

    Meyzen C M, Ludden J N, Humler E, et al. 2005.New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 6(11), doi: 10.1029/2005GC000979.

    [19]

    Michael P J, Langmuir C H, Dick H J B, et al. 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature, 423(6943): 956-961.

    [20]

    Minshull T A, Muller M R, White R S. 2006. Crustal structure of the Southwest Indian Ridge at 66°E: Seismic constraints. Geophysical Journal International, 166(1): 135-147.

    [21]

    Morgan W J. 1978. Rodriguez, Darwin, Amsterdam, ..., a second type of hotspot island. Journal of Geophysical Research: Solid Earth (1978—2012), 83(B11): 5355-5360.

    [22]

    Muller M R, Minshull T A, White R S. 2000. Crustal structure of the Southwest Indian Ridge at the Atlantis II fracture zone. Journal of Geophysical Research: Solid Earth (1978—2012), 105(B11): 25809-25828.

    [23]

    Okino K, Curewitz D, Asada M, et al. 2002. Preliminary analysis of the Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system. Earth and Planetary Science Letters, 202(2): 275-288.

    [24]

    Sauter D, Cannat M, Meyzen C, et al. 2009. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E: interaction with the Crozet hotspot? Geophysical Journal International, 179(2): 687-699.

    [25]

    Sauter D, Carton H, Mendel V, et al. 2004a. Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50°30'E, 55°30'E and 66°20'E): Implications for magmatic processes at ultraslow-spreading centers. Geochemistry, Geophysics, Geosystems, 5(5).

    [26]

    Sauter D, Mendel V, Rommevaux-Jestin C, et al. 2004b. Focused magmatism versus amagmatic spreading along the ultra-slow spreading Southwest Indian Ridge: Evidence from TOBI side scan sonar imagery. Geochemistry, Geophysics, Geosystems, 5(10), doi: 10.1029/2004GC000738.

    [27]

    Sauter D, Patriat P, Rommevaux-Jestin C, et al. 2001. The Southwest Indian Ridge between 49°15'E and 57°E: Focused accretion and magma redistribution. Earth and Planetary Science Letters, 192(3): 303-317.

    [28]

    Searle R C, Bralee A V. 2007. Asymmetric generation of oceanic crust at the ultra-slow spreading Southwest Indian Ridge, 64°E. Geochemistry, Geophysics, Geosystems, 8(5), doi: 10.1029/2006GC001529.

    [29]

    Seyler M, Cannat M, Mével C. 2003. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E). Geochemistry, Geophysics, Geosystems, 4(2), doi: 10.1029/2002GC000305.

    [30]

    Small C. 1995. Observations of ridge-hotspot interactions in the Southern Ocean. Journal of Geophysical Research: Solid Earth (1978—2012), 100(B9): 17931-17946.

    [31]

    Smith D K, Escartín J, Schouten H, et al. 2012. Active long-lived faults emerging along slow-spreading mid-ocean ridges. Oceanography, 25(1): 94-99.

    [32]

    Solomon S. 1989. In Drilling the Oceanic Lower Crust and Mantle. JOI/USSAC Workshop Report: 73-74.

    [33]

    Tao C, Lin J, Guo S, et al. 2011. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40(1): 47-50.

    [34]

    Van Wijk J W, Blackman D K. 2007. Development of en echelon magmatic segments along oblique spreading ridges. Geology, 35(7): 599-602.

    [35]

    Zhang T, Lin J, Gao J Y. 2013. Magmatism and tectonic processes in area a hydrothermal vent on the Southwest Indian ridge. Science China Earth Sciences,56(12): 2186-2197, doi: 10.1007/s11430-013-4630-5.

    [36]

    Zhao M H, Qiu X L, Li J B, et al. 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39'E). Geochemistry, Geophysics, Geosystems, 14(10): 4544-4563.

    [37]

    Zhu J, Lin J, Chen Y J, et al. 2010. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge. Geophysical Research Letters, 37(18), doi: 10.1029/2010GL043542.

    [38]

    Zhou H Y, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 2013,494(7436): 195-200.

  • 加载中
计量
  • 文章访问数:  2260
  • PDF下载数:  2374
  • 施引文献:  0
出版历程
收稿日期:  2013-09-17
修回日期:  2014-09-01
上线日期:  2014-09-20

目录