Scented Sorghum (Sorghum bicolor L. Moench): A Novel Avenue to Boost the Millet’s Popularity

Bodhisattya Pal 1 , Sourish Pramanik 2 , Aditi Kishore 3

1   Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India https://orcid.org/0009-0002-6024-9011
2   Department of Plant Pathology, Punjab Agricultural University, Ludhiana 141004, India https://orcid.org/0000-0002-8848-3275
3   Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India https://orcid.org/0009-0007-6492-0585

✉ Author responsible for correspondence: This information is protected, please see article PDF.

doi 10.59983/s2024020106

doi

Abstract

The current unpredictability of the climate is, directly and indirectly, affecting global food and nutritional security. In this instance, nutritional enrichment major attribute that is eventually necessary to help conventional crops become more resilient to future calamities. Sorghum is a crop widely acknowledged to be sustainable for the future due to its ability to withstand environmental variations and its crucial role in guaranteeing food and nutritional security. However, the primary obstacle to its broad appeal is the difficulty of garnering public approval. Perhaps the possible solution might lie in the scented sorghum which has enhanced flavors and distinct sensory qualities. The global population has responded most affectionately to fragrant cereals, and apparently, the same opportunity can be utilized by scented sorghum cultivars. It unveils an expanded potential for offering enhanced nutrients per portion compared to conventional alternatives, and it is quite probable that customers would choose them as a fragrant substitute based on previously observed choices. This paper briefly discusses the historical background and current advancements in scented sorghum research. Additionally, it examines the genetic makeup and molecular approaches applied to the diverse fragrant crops, potentially paving the way for sorghum to become a future defender of food and nutritional security. It further emphasizes that combining a nutrient-rich cereal like sorghum with enhanced fragrance and flavors has the potential to enhance its appeal and make it more accessible on the consumer's plate.

Keywords:

fragrant sorghum, aroma, Basmati, food security

Downloads

Download data is not yet available.

References

Abbas, F., Zhou, Y., O’Neill Rothenberg, D., Alam, I., Ke, Y., & Wang, H. C. (2023). Aroma components in horticultural crops: chemical diversity and usage of metabolic engineering for industrial applications. Plants, 12(9), 1748. https://doi.org/10.3390/plants12091748

Amarawathi, Y., Singh, R., Singh, A. K., Singh, V. P., Mohapatra, T., Sharma, T. R., & Singh, N. K. (2008). Mapping of quantitative trait loci for Basmati quality traits in rice (Oryza sativa L.). Molecular Breeding, 21, 49-65. https://doi.org/10.1007/s11032-007-9108-8

Arikit, S., Yoshihashi, T., Wanchana, S., Uyen, T. T., Huong, N. T., Wongpornchai, S., & Vanavichit, A. (2011). Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2‐acetyl‐1‐pyrroline biosynthesis in soybeans (Glycine max L.). Plant Biotechnology Journal, 9(1), 75-87. https://doi.org/10.1111/j.1467-7652.2010.00533.x

Aruna, C., Deepika, C., Rao, K. V. R., & Tonapi, T. A. (2020). Golden jubilee publication: 50 years of sorghum research: contribution of AICRP-Sorghum centres. ICAR-Indian Institute of Millets Research, Hyderabad, India, pp. 244. Available online: https://www.millets.res.in/pub/2020/GoldenJubileePublication_50Years_of_Publication.pdf (accessed 10 October 2023).

Ashokkumar, S., Jaganathan, D., Ramanathan, V., Rahman, H., Palaniswamy, R., Kambale, R., & Muthurajan, R. (2020). Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PloS One, 15(8), e0237018. https://doi.org/10.1371/journal.pone.0237018.s001

Attar, U., Hinge, V., Zanan, R., Adhav, R., & Nadaf, A. (2017). Identification of aroma volatiles and understanding 2-acetyl-1-pyrroline biosynthetic mechanism in aromatic mung bean (Vigna radiata (L.) Wilczek). Physiology and Molecular Biology of Plants, 23, 443-451. https://doi.org/10.1007/s12298-017-0414-2

AVRDC (2003). AVRDC progress report 2002. World Vegetable Center. Available online: https://avrdc.org/publications/annual-reports/ (accessed 10 October 2023).

Awika, J. M. (2017). Sorghum: Its unique nutritional and health-promoting attributes. In Gluten-free ancient grains. Woodhead Publishing. Sawston, United Kingdom. pp. 21-54. https://doi.org/10.1016/B978-0-08-100866-9.00003-0

Ayyangar, G. R. (1939). Studies in sorghum. Journal of Madras University 1(1), 131 -143.

Basanagouda, G., Ramesh, S., Siddu, C. B., Chandana, B. R., Kalpana, M. P., Rotti, K., & Sathish, H. (2023). A non-synonymous SNP in homolog of BADH2 gene is associated with fresh pod fragrance in dolichos bean (Lablab purpureus var. lignosus (Prain) Kumari). Genetic Resources and Crop Evolution, 70(2), 373-380. https://doi.org/10.1007/s10722-022-01535-y

Berner, D. K., & Hoff, B. J. (1986). Inheritance of Scent in American Long Grain Rice 1. Crop science, 26(5), 876-878.

Birhanu, S. (2021). Potential benefits of sorghum [Sorghum bicolor (L.) Moench] on human health: A review. International Journal of Food Engineering and Technology, 5(1), 8-18. https://doi.org/10.11648/J.IJFET.20210501.13

Bradbury, L. M., Fitzgerald, T. L., Henry, R. J., Jin, Q., & Waters, D. L. (2005). The gene for fragrance in rice. Plant Biotechnology Journal, 3(3), 363-370. https://doi.org/10.1111/j.1467-7652.2005.00131.x

Bradbury, L. M., Henry, R. J., Jin, Q., Reinke, R. F., & Waters, D. L. (2005). A perfect marker for fragrance genotyping in rice. Molecular Breeding, 16, 279-283. https://doi.org/10.1007/s11032-005-0776-y

Buttery, R.G., Juliano, B.O., & Ling, L.C. (1983). Identification of rice aroma compound 2-acetyl-1-pyrroline in Panda leaves. Chemistry & Industry, 23, 478.

Chadalavada, K., Kumari, B. R., & Kumar, T. S. (2021). Sorghum mitigates climate variability and change on crop yield and quality. Planta, 253(5), 113. https://doi.org/10.1007/s00425-021-03631-2

Chaturvedi, P., Govindaraj, M., Govindan, V., & Weckwerth, W. (2022). Sorghum and pearl millet as climate resilient crops for food and nutrition security. Frontiers in Plant Science, 13, 851970. https://doi.org/10.3389/fpls.2022.851970

Dayakar Rao, B., Bhaskarachary, K., Arlene Christina, G. D., Sudha Devi, G., Vilas, A. T., & Tonapi, A. (2017). Nutritional and health benefits of millets. ICAR-Indian Institute of Millets Research (IIMR) Rajendranagar, Hyderabad, India.

Dias, L. G., Hacke, A., Bergara, S. F., Villela, O. V., Mariutti, L. R. B., & Bragagnolo, N. (2021). Identification of volatiles and odor-active compounds of aromatic rice by OSME analysis and SPME/GC-MS. Food Research International, 142, 110206. https://doi.org/10.1016/j.foodres.2021.110206

Erten, E. S., & Cadwallader, K. R. (2017). Identification of predominant aroma components of raw, dry roasted and oil roasted almonds. Food Chemistry, 217, 244-253. https://doi.org/10.1016/j.foodchem.2016.08.091

Fan, X., Jiao, X., Liu, J., Jia, M., Blanchard, C., & Zhou, Z. (2021). Characterizing the volatile compounds of different sorghum cultivars by both GC-MS and HS-GC-IMS. Food Research International, 140, 109975.

Fushimi, T., & Masuda, R. (2001, August). 2-acetyl-1-pyrroline concentration of the vegetable soybean. In Proceeding of the 2nd international vegetable soybean conference. Washington State University, Pullman, Vol. 39. https://doi.org/10.2135/cropsci1986.0011183X002600050008x

Hashemi, F. G., Rafii, M. Y., Ismail, M. R., Mahmud, T. M. M., Rahim, H. A., Asfaliza, R., & Latif, M. A. (2013). Biochemical, genetic and molecular advances of fragrance characteristics in rice. Critical Reviews in Plant Sciences, 32(6), 445-457.

Hu, X., Lu, L., Guo, Z., & Zhu, Z. (2020). Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends in Food Science & Technology, 97, 136-146. https://doi.org/10.1016/j.tifs.2020.01.003

Huang, T. C., Teng, C. S., Chang, J. L., Chuang, H. S., Ho, C. T., & Wu, M. L. (2008). Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with Δ1-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice (Oryza sativa L.) callus. Journal of Agricultural and Food Chemistry, 56(16), 7399-7404. https://doi.org/10.1021/jf8011739

IRGSP (2005). The map-based sequence of the rice genome. International Rice Genome Sequencing Project. Nature, 436(7052), 793-800.

Jin, Q., Waters, D., Cordeiro, G. M., Henry, R. J., & Reinke, R. F. (2003). A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Plant Science, 165(2), 359-364. https://doi.org/10.1016/S0168-9452(03)00195-X

Junxing, L. I., Aiqing, M., Gangjun, Z. H. A. O., Xiaoxi, L., Haibin, W., Jianning, L., & Chengying, M. (2022). Assessment of the ‘taro-like’aroma of pumpkin fruit (Cucurbita moschata D.) via E-nose, GC–MS and GC-O analysis. Food Chemistry: X, 15, 100435. https://doi.org/10.1016/j.fochx.2022.100435

Juwattanasomran, R., Somta, P., Chankaew, S., Shimizu, T., Wongpornchai, S., Kaga, A., & Srinives, P. (2011). A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety “Kaori” and SNAP marker development for the fragrance. Theoretical and Applied Genetics, 122, 533-541. https://doi.org/10.1007/s00122-010-1467-6

Juwattanasomran, R., Somta, P., Kaga, A., Chankaew, S., Shimizu, T., Sorajjapinun, W., & Srinives, P. (2012). Identification of a new fragrance allele in soybean and development of its functional marker. Molecular Breeding, 29, 13-21. https://doi.org/10.1007/s11032-010-9523-0

Kaikavoosi, K., Kad, T. D., Zanan, R. L., & Nadaf, A. B. (2015). 2-Acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through Δ 1-pyrroline-5-carboxylate synthetase (P5CS) gene transformation. Applied Biochemistry and Biotechnology, 177, 1466-1479. https://doi.org/10.1007/s12010-015-1827-4

Kottur, G. L. (1919). Classification and description of the jowars of the Bombay Karnataka. Bombay Department Agricultural Bulletin, 92, 1-16.

Kovach, M. J., Calingacion, M. N., Fitzgerald, M. A., & McCouch, S. R. (2009). The origin and evolution of fragrance in rice (Oryza sativa L.). Proceedings of the National Academy of Sciences, 106(34), 14444-14449. https://doi.org/10.1073/pnas.0904077106

Kumar, A., Tomer, V., Kaur, A., Kumar, V., & Gupta, K. (2018). Millets: a solution to agrarian and nutritional challenges. Agriculture & Food Security, 7(1), 1-15.

Kumar, M. (2019). India’s rice export: What is in it for farmers?. Agrarian South: Journal of Political Economy, 8(1-2), 136-171. https://doi.org/10.1177/2277976019851930

Kumar, V., Yadav, A., Kumar, A., & Singh, D. (2021). Magnitude, Direction and Determinants of Basmati Rice Export of India. Agro Economist - An International Journal, 8(01), 57-62. https://doi.org/10.30954/2394-8159.01.2021.9

Liu, B., Chang, Y., Sui, X., Wang, R., Liu, Z., Sun, J., & Xia, J. (2022). Characterization of predominant aroma components in raw and roasted walnut (Juglans regia L.). Food Analytical Methods, 1-11. https://doi.org/10.1007/s12161-021-02153-7

Luckanatinvong, V., Mahatheeranont, S., & Siriphanich, J. (2018). Variation in the aromatic nature of Nam-Hom coconut depends on the presence and contents of 2-acetyl-1-pyrroline. Scientia Horticulturae, 233, 277-282. https://doi.org/10.1016/j.scienta.2018.01.049

Maruthamuthu, E., & Tonapi, V. A. (2019). IC568489 (IC0568489; INGR18022), Scented Sorghum (Sorghum bicolor) Germplasm. Indian Journal of Plant Genetic Resources, 32(3), 430-431.

Maunder, A. B. (2002). Sorghum worldwide. Sorghum and millet diseases, Willey Online Library, pp. 11, 17.

Mawouma, S., Condurache, N. N., Turturică, M., Constantin, O. E., Croitoru, C., & Rapeanu, G. (2022). Chemical composition and antioxidant profile of sorghum (Sorghum bicolor (L.) Moench) and pearl millet (Pennisetum glaucum (L.) R. Br.) grains cultivated in the far-North region of Cameroon. Foods, 11(14), 2026.

Mengesha, M. H., & Rao, K. P. (1990). World sorghum germplasm collection and conservation. Plant Genetics and Breeding, 150, 90-104.

Monkhan, T., Chen, X., & Somta, P. (2021). BADH1 is associated with fragrance in sorghum (Sorghum bicolor (L.) Moench) cultivar ‘Ambemohor’. Journal of Genetics, 100, 1-7. https://doi.org/10.1007/s12041-020-01256-0

Murty, D. S., Nicodemus, K. D., & House, L. R. (1982). Inheritance of Basmati and Dimpled Seed in Sorghum 1. Crop Science, 22(5), 1080-1082. https://doi.org/10.2135/cropsci1982.0011183X002200050046x

Nayak, A. R., Reddy, J. N., & Pattnaik, A. K. (2002). Quality evaluation of some Thailand and Vietnam scented rice. Indian Journal of Plant Genetic Resources, 15(2), 125–127.

Nunes, E. E., de B. Vilas Boas, E. V., Guerreiro, M. C., das G. Cardoso, M., & Vilas Boas, B. M. (2013, June). Profile of volatile compounds of freshly cut Peruvian carrot during storage. In XI International Controlled and Modified Atmosphere Research Conference 1071, pp. 659-665. https://doi.org/10.17660/ActaHortic.2015.1071.87

Pachauri, V., Mishra, V., Mishra, P., Singh, A. K., Singh, S., Singh, R., & Singh, N. K. (2014). Identification of candidate genes for rice grain aroma by combining QTL mapping and transcriptome profiling approaches. Cereal Research Communications, 42, 376-388. https://doi.org/10.1556/CRC.42.2014.3.2

Pal, B., Mukhopadhyay, A., Kishore, A., Agarwal, A. K., Debangshi, U., Verma, H. P., & Jathar, G. S. (2023). Revitalizing the Potential of Minor Millets: Agrarian Constraints, Possible Solutions and Future Roadmap. International Journal of Environment and Climate Change, 13(7), 328-338. https://doi.org/10.9734/ijecc/2023/v13i71884

Prasada Rao K E and DS Murthy (1979) A Basmati (scented) sorghum from Madhya Pradesh. Current Science, 48, 824-825.

Qian, L., Jin, H., Yang, Q., Zhu, L., Yu, X., Fu, X., & Yuan, F. (2022). A sequence variation in GmBADH2 enhances soybean aroma and is a functional marker for improving soybean flavor. International Journal of Molecular Sciences, 23(8), 4116. https://doi.org/10.3390/ijms23084116

Romanczyk Jr, L. J., McClelland, C. A., Post, L. S., & Aitken, W. M. (1995). Formation of 2-acetyl-1-pyrroline by several Bacillus cereus strains isolated from cocoa fermentation boxes. Journal of Agricultural and Food Chemistry, 43(2), 469-475. https://doi.org/10.1021/jf00050a040

Ruangnam, S., Wanchana, S., Phoka, N., Saeansuk, C., Mahatheeranont, S., de Hoop, S. J., & Arikit, S. (2017). A deletion of the gene encoding amino aldehyde dehydrogenase enhances the “pandan-like” aroma of winter melon (Benincasa hispida) and is a functional marker for the development of the aroma. Theoretical and Applied Genetics, 130, 2557-2565. https://doi.org/10.1007/s00122-017-2976-3

Saensuk, C., Ruangnam, S., Pitaloka, M. K., Dumhai, R., Mahatheeranont, S., de Hoop, S. J., & Arikit, S. (2022). A SNP of betaine aldehyde dehydrogenase (BADH) enhances an aroma (2-acetyl-1-pyrroline) in sponge gourd (Luffa cylindrica) and ridge gourd (Luffa acutangula). Scientific Reports, 12(1), 3718. https://doi.org/10.1038/s41598-022-07478-9

Saensuk, C., Wanchana, S., Choowongkomon, K., Wongpornchai, S., Kraithong, T., Imsabai, W., & Arikit, S. (2016). De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Science, 252, 324-334. https://doi.org/10.1016/j.plantsci.2016.08.014

Schieberle, P., & Grosch, W. (1991). Potent odorants of the wheat bread crumb Differences to the crust and effect of a longer dough fermentation. Zeitschrift f r Lebensmittel-Untersuchung und-Forschung, 192(2), 130-135.

Shan, Q., Zhang, Y., Chen, K., Zhang, K., & Gao, C. (2015). Creation of fragrant rice by targeted knockout of the Os BADH 2 gene using TALEN technology. Plant Biotechnology Journal, 13(6), 791-800. https://doi.org/10.1111/pbi.12312

Sharma, A., Srivastava, A., Singh, S., Mishra, S., Mohan, S., Singh, A., & Jaiswal, H. K. (2021). Aromatic Rice of India: It’s Types and Breeding Strategies. London, UK: IntechOpen. https://doi.org/10.5772/intechopen.99232

Singh, A., Singh, P. K., Singh, R., Pandit, A., Mahato, A. K., & Sharma, T. R. (2010). SNP haplotypes of the BADH1 gene and their association with aroma in rice (Oryza sativa L.). Molecular Breeding, 26, 325-338. https://doi.org/10.1007/s11032-010-9425-1

Singh, R. K., Khush, G. S., Singh, U. S., Singh, A. K., & Singh, S. (2000). Breeding aromatic rice for high yield, improved aroma and grain quality. Singh, Singh and Khush (eds), Aromatic Rices, Oxford & IBH Publications, pp. 71-106.

Singh, V. S., Mohan, M., & Borkar, A. (2005). A scented sorghum Landrace from Bundelkhand region of Uttar Pradesh. Indian Journal of Plant Genetic Resources, 18(02), 1-10.

Somta, P, Kuswanto, K., & Srinives, P. (2019). The genetics of pandan-like fragrance, 2-acetyl-1-pyrroline, in crops. AGRIVITA, Journal of Agricultural Science, 41(1), 10-22.

Sood, B. C. (1978). A rapid technique for scent determination in rice. Indian Journal of Genetic and Plant Breeding, 38, 268-271.

Strugnell, C., & Jones, L. (1999). Consumer perceptions and opinions of fragrances in household products. Nutrition & Food Science, 99(4), 1-9.

Talukdar, P. R., Rathi, S., Pathak, K., Chetia, S. K., & Sarma, R. N. (2017). Population structure and marker-trait association in indigenous aromatic rice. Rice Science, 24(3), 145-154. https://doi.org/10.1016/j.rsci.2016.08.009

Tang, Y., Abdelrahman, M., Li, J., Wang, F., Ji, Z., Qi, H., & Zhao, K. (2021). CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice. Plant Biotechnology Journal, 19(4), 642. https://doi.org/10.1111/pbi.13514

Tanwar, R., Panghal, A., Chaudhary, G., Kumari, A., & Chhikara, N. (2023). Nutritional, Phytochemical and Functional Potential of Sorghum: A Review. Food Chemistry Advances, 100501. https://doi.org/10.1016/j.focha.2023.100501

Taylor, J. R. N. (2003, April). Overview: Importance of sorghum in Africa. In Afripro: workshop on the proteins of sorghum and millets: enhancing nutritional and functional properties for Africa, Pretoria, Vol. 2, No. 4, pp. 1-21.

Vanavichit, A., Kamolsukyeunyong, W., Siangliw, M., Siangliw, J. L., Traprab, S., Ruengphayak, S., & Tragoonrung, S. (2018). Thai Hom Mali Rice: Origin and breeding for subsistence rainfed lowland rice system. Rice, 11, 1-12. https://doi.org/10.1186/s12284-018-0212-7

Vemireddy, L. R., Tanti, B., Lahkar, L., & Shandilya, Z. M. (2021). Aromatic rices: Evolution, genetics and improvement through conventional breeding and biotechnological methods. In Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality, pp. 341-357. https://doi.org/10.1002/9781119633174.ch18

Verma, D. K., & Srivastav, P. P. (2016). Extraction technology for rice volatile aroma compounds In: Food Engineering Emerging Issues, Modeling, and Applications (eds. Meghwal, M., & Goyal, M. R.). In book series on Innovations in Agricultural and Biological Engineering, Apple Academic Press, USA. pp. 245–291.

Wanchana, S. (2005). Identification of genes controlling grain aroma and amylose content for positional cloning and marker-assisted selection program in rice (Oryza sativa L.). Thailand: Kasetsart University.

Wang, Y., Liu, X., Zheng, X., Wang, W., Yin, X., Liu, H., & Wang, F. (2021). Creation of aromatic maize by CRISPR/Cas. Journal of Integrative Plant Biology, 63(9), 1664-1670. https://doi.org/10.1111/jipb.13105

Wu, M. L., Chou, K. L., Wu, C. R., Chen, J. K., & Huang, T. C. (2009). Characterization and the possible formation mechanism of 2‐acetyl‐1‐pyrroline in aromatic vegetable soybean (Glycine max L.). Journal of Food Science, 74(5), S192-S197. https://doi.org/10.1111/j.1750-3841.2009.01166.x

Xie, P., Shi, J., Tang, S., Chen, C., Khan, A., Zhang, F., & Xie, Q. (2019). Control of bird feeding behavior by Tannin1 through modulating the biosynthesis of polyphenols and fatty acid-derived volatiles in sorghum. Molecular Plant, 12(10), 1315-1324. https://doi.org/10.1016/j.molp.2019.08.004

Yundaeng, C., Somta, P., Tangphatsornruang, S., Chankaew, S., & Srinives, P. (2015). A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance. Theoretical and Applied Genetics, 128, 1881-1892. https://doi.org/10.1007/s00122-015-2554-5

Yundaeng, C., Somta, P., Tangphatsornruang, S., Wongpornchai, S., & Srinives, P. (2013). Gene discovery and functional marker development for fragrance in sorghum (Sorghum bicolor (L.) Moench). Theoretical and Applied Genetics, 126, 2897-2906. https://doi.org/10.1007/s00122-013-2180-z

Zanan, R., Khandagale, K., Hinge, V., Elangovan, M., Henry, R. J., & Nadaf, A. (2016). Characterization of fragrance in sorghum (Sorghum bicolor (L.) Moench) grain and development of a gene-based marker for selection in breeding. Molecular Breeding, 36, 1-12. https://doi.org/10.1007/s11032-016-0582-8

Zhang, D., Tang, S., Xie, P., Yang, D., Wu, Y., Cheng, S., & Xie, Q. (2022). Creation of fragrant sorghum by CRISPR/Cas9. Journal of Integrative Plant Biology, 64(5), 961-964. https://doi.org/10.1111/jipb.13232

Zhang, Y., He, Q., Zhang, S., Man, X., Sui, Y., Jia, G., & Diao, X. (2023). De novo creation of popcorn‐like fragrant foxtail millet. Journal of Integrative Plant Biology, 65(11), 2412-2415. https://doi.org/10.1111/jipb.13556

Downloads

Published

25-03-2024

How to Cite

Pal, B., Pramanik, S., & Kishore, A. (2024). Scented Sorghum (Sorghum bicolor L. Moench): A Novel Avenue to Boost the Millet’s Popularity. AgroEnvironmental Sustainability, 2(1), 51–61. https://doi.org/10.59983/s2024020106