Diferencias de género en test de rotación mental: una perspectiva desde la enseñanza de la geometría

Autores/as

DOI:

https://doi.org/10.5944/educxx1.33150

Palabras clave:

rotación mental, test PMA, resolución de problemas complejos, diferencias de género

Resumen

De acuerdo con la literatura, los hombres obtienen puntuaciones superiores a las mujeres en ciertas pruebas de rotación mental y en ejercicios de resolución de problemas complejos. Este estudio analiza los tipos de errores cometidos en la subprueba de relaciones espaciales de habilidades mentales primarias (PMA) por 328 estudiantes de secundaria (edades comprendidas entre los 13 y 16 años). De ellos, 143 participaban en un programa de estímulo del talento matemático, dado que habían mostrado habilidades en la resolución de problemas matemáticos complejos. Los tipos de errores detectados se definen en términos del ángulo de rotación del objeto y la presencia de simetrías en los ítems del test. Los resultados muestran un rendimiento significativamente mayor de los alumnos con alta habilidad matemática. Las diferencias de género únicamente se evidencian a favor de los chicos en la puntuación global del test y en el número de ítems no contestados. Sin embargo, no se encuentran diferencias de género en ninguno de los tipos de errores asociados a las propiedades geométricas de los ítems. Además, no existe interacción significativa entre las variables independientes género y habilidad para la resolución de problemas complejos. Las conclusiones extraídas de esos hallazgos introducen matices en la comprensión de las diferencias de género identificadas tradicionalmente en las habilidades de visualización, particularmente en relación con las propiedades geométricas en las pruebas de rotación mental. Se enfatiza que la investigación educativa puede focalizarse en otros aspectos, como pueden ser los emocionales o actitudinales que afectan al proceso de realización de los test, como la rapidez o el uso de estrategias menos eficientes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alansari, B. M., DerEgowski, J. B., & McGeorge, P. (2008). Sex differences in spatial visualization of Kuwaiti school children. Social Behavior and Personality, 36(6), 811-824. https://doi.org/10.2224/sbp.2008.36.6.811

Arendasy, M. E., & Sommer, M. (2012). Gender differences in figural matrices: The moderating role of item design features. Intelligence, 40(6), 584-597. https://doi.org/10.1016/j.intell.2012.08.003

Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215-241. https://doi.org/10.1023/A:1024312321077

Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 21(1), 47-60. https://doi.org/10.2307/749456

Benbow, C. P., & Stanley, J. C. (1996). Inequity in equity: How ‘‘equity’ can lead to inequity for high potential students. Psychology, Public Policy and Law, 2, 249-292. https://doi.org/10.1037/1076-8971.2.2.249

Bench, S. W., Lench, H. C., Liew, J., Miner, K., & Flores, S. A. (2015). Gender gaps in overestimation of math performance. Sex Roles, 72, 536-546. https://doi.org/10.1007/s11199-015-0486-9

Campos, A. (2014). Gender differences in imagery. Personality and Individual Differences, 59, 107–111. https://doi.org/10.1016/j.paid.2013.12.010

Cheng, Y., & Mix, K. S. (2014). Spatial training improves children´s mathematics ability. Journal of Cognition and Development, 15(1), 2-11. https://doi.org/10.1080/15248372.2012.725186

Clements, M. K. (1980). Analyzing children’s errors on written mathematical tasks. Educational Studies in Mathematics, 11, 1-21. https://doi.org/doi:10.1007/BF00369157

Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. En D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420-464). MacMillan.

Contreras, M. J., Martínez-Molina, A., & Santacreu, J. (2012). Do the sex differences play such an important role in explaining performance in spatial tasks? Personality and Individual Differences, 52(6), 659-663. https://doi.org/10.1016/j.paid.2011.12.010

Contreras, M. J., Rubio, V., Peña, D., Colom, R., & Santacreu, J. (2007). Sex differences in dynamic spatial ability: The unsolved question of performance factors. Memory & Cognition, 35(2), 297-303. https://doi.org/10.3758/BF03193450

Corbett, C., Hill, C., & St. Rose, A. (2008). Where the girls are: The facts about gender equity in education-executive summary. Educational Foundation, American Association of University Women.

Cruz, A. & Ramírez, R. (2018). Componentes del sentido espacial en un test de capacidad espacial. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García-García, & A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 211-220). SEIEM.

Delgado, A., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32, 25-32. https://doi.org/10.1016/S0160-2896(03)00061-8

Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136(1), 103-127. https://doi.org/10.1037/a0018053

Ganley, C. M., & Vasilyeva, M. (2011). Sex differences in the relation between math performance, spatial skills and attitudes. Journal of Applied Developmental Psychology, 32(4), 235-242. https://doi.org/10.1016/j.appdev.2011.04.001

Gibbs, B. G. (2010). Reversing fortunes or content change? Gender gaps in math-related skill throughout childhood. Social Science Research, 39(4), 540-569. https://doi.org/10.1016/j.ssresearch.2010.02.005

Goldstein, D., Haldane, D., & Mitchell, C. (1990). Sex differences in visual-spatial ability: The role of performance factors. Memory & Cognition, 18(5), 546-550. https://doi.org/10.3758/BF03198487

González-Calero, J. A., Cózar, R., Villena, R., & Merino, J. M. (2018). The development of mental rotation abilities through robotics-based instruction: An experience mediated by gender. British Journal of Educational Technology, 50(6), 3198-3213. https://doi.org/10.1111/bjet.12726

Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Shibley, J. S., & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8(1), 1-51. https://doi.org/10.1111/j.1529-1006.2007.00032.x

Harris, D., Lowrie, T., Logan, T., & Hegarty, M. (2021). Spatial reasoning, mathematics, and gender: Do spatial constructs differ in their contribution to performance? British Journal of Educational Psychology, 91(1), 409–441. https://doi.org/10.1111/bjep.12371

Hawes, Z., Gilligan-Lee, K., & Mix, K. (2022). Effects of spatial training on mathematics performance: A meta-analysis. Development Psychology, 58(1), 112-137. https://doi.org/10.1037/dev0001281

Hyde, J. S. (2014). Gender similarities and differences. Annual Review of Psychology, 65, 373-398. https://doi.org/10.1146/annurev-psych-010213-115057

Hyde, J. S., Fennema, E., & Lamon, S. (1990). Gender differences in mathematics performance: A meta-analysis. Psychological Bulletin, 107, 139–55. https://doi.org/10.1037/0033-2909.107.2.139

Johnson, T., Burgoyne, A., Mix, K., & Young, C. (2021). Spatial and mathematics skills: Similarities and differences related to age, SES, and gender. Cognition, 218(2), Artículo 104918. https://doi.org/10.1016/j.cognition.2021.104918

Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137–172. https://doi.org/10.1037/0033-295X.92.2.137

Lauer, J. E., Yhang, E., & Lourenco, S. F. (2019). The development of gender differences in spatial reasoning: A meta-analytic review. Psychological Bulletin, 145(6), 537-565. https://doi.org/10.1037/bul0000191

Lindberg, S. M., Hyde, J. S., Petersen, J., & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136, 1123-1135. https://doi.org/10.1037/a0021276

Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498. https://doi.org/10.2307/1130467

Liu, O. L., & Wilson, M. (2009). Gender differences and similarities in PISA 2003 mathematics: A comparison between the United States and Hong Kong. International Journal of Testing, 9(1), 20-40. https://doi.org/10.1080/15305050902733547

Maeda, Y., & Yoon, S. Y. (2016). Are gender differences in spatial ability real or an artifact? Evaluation of measurement invariance on the Revised PSVT. Journal of Psychoeducational Assessment, 34(4), 397-403. https://doi.org/10.1177/0734282915609843

Manger, T., & Eikeland, O. (1998). The effects of spatial visualization and students’ sex on mathematical achievement. British Journal of Psychology, 89, 17-25. https://doi.org/10.1111/j.2044-8295.1998.tb02670.x

Moè, A. (2021). Doubling mental rotation scores in high school students: Effects of motivational and strategic trainings. Learning and Instruction, 74, 101461. https://doi.org/10.1016/j.learninstruc.2021.101461

National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. NCTM.

Niederle, M., & Vesterlud, L. (2010). Explaining the gender gap in math test scores: The role of competition. Journal of Economic Perspectives, 24(2), 129-44. https://doi.org/10.1257/jep.24.2.129

Núñez-Peña, M. I., & Aznar-Casanova, J. A. (2009). Rotación mental: Cómo la mente rota las imágenes hasta colocarlas en su posición normal. Ciencia Cognitiva: Revista Electrónica de Divulgación, 3(2), 58-61.

Peña, D., Contreras, M. J., Shih, P. C., & Santacreu, J. (2008). Solution strategies as possible explanations of individual and sex differences in a dynamic spatial task. Acta Psychological, 128(1), 1-14. https://doi.org/10.1016/j.actpsy.2007.09.005

Peters, M. (2005). Sex differences and the factor of time in solving Vandenberg and Kuse mental rotation problems. Brain and Cognition, 57(2), 176-184. https://doi.org/10.1016/j.bandc.2004.08.052

Petrusic, W. M., Varro, L., & Jamieson, D. G. (1978). Mental rotation validation of two spatial ability tests. Psychological Research, 40(2), 139-148. https://doi.org/10.1007/BF00308409

Pezaris, E., & Casey, M. B. (1991). Girls who use “masculine” problem-solving strategies on a spatial task: Proposed genetic and environmental factors. Brain and Cognition, 17(1), 1–22. https://doi.org/10.1016/0278-2626(91)90062D

Preckel, F., Goetz, T., Pekrun, R., & Kleine, M. (2008). Gender differences in gifted and average-ability students: Comparing girls’ and boys’ achievement, self-concept, interest, and motivation in mathematics. Gifted Child Quarterly, 52(2), 146-159. https://doi.org/10.1177/0016986208315834

Rabab’h, B., & Veloo, A. (2015). Spatial visualization as mediating between mathematics learning strategy and mathematics achievement among 8th grade students. International Education Studies. 8(5), 1-11. https://doi.org/10.5539/ies.v8n5p1

Ramírez, R., & Flores, P. (2017). Habilidades de visualización de estudiantes con talento matemático: comparativa entre los test psicométricos y las habilidades de visualización manifestadas en tareas geométricas. Enseñanza de las Ciencias, 35(2), 179-196. https://doi.org/10.5565/rev/ensciencias.2152

Ramírez-Uclés, R., Ramírez-Uclés, I., Flores, P., & Castro, E. (2013). Analysis of spatial visualization and intellectual capabilities in mathematically gifted students. Revista Mexicana de Psicología, 30, 24-31.

Ramírez-Uclés, I., & Ramírez Uclés, R. (2020). Gender differences in visuospatial abilities and complex mathematical problem solving. Frontiers Psychology, 11(191), 1-10. https://doi.org/10.3389/fpsyg.2020.00191

Reinking, A., & Martín, B. (2018). La brecha de género en los campos STEM: Teorías, movimientos e ideas para involucrar a las chicas en entornos STEM. Journal of New Approaches in Educational Research, 70(2), 160-166. https://doi.org/10.7821/naer.2018.7.271

Rivera, F.D. (2011). Towards a visually-oriented school mathematics curriculum. Springer. https://doi.org/10.1007/978-94-007-0014-7

Rodán, A., Montoro, P. R., Martínez-Molina, A., & Contreras, M. J. (2022). Effectiveness of spatial training in elementary and secondary school: everyone learns. Educación XX1, 25(1), 381-406. https://doi.org/10.5944/educXX1.30100

Scheiber, C., Reynolds, M. R., Hajovsky, D. B., & Kaufman, A. S. (2015). Gender differences in achievement in a large, nationally representative sample of children and adolescents. Psychology in the Schools, 52, 335-348. https://doi.org/doi:10.1002/pits.21827

Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35, 4-28. https://doi.org/10.1006/jesp.1998.1373

Steinmayr, R., & Spinath, B. (2008). Sex differences in school achievement: What are the roles of personality and achievement motivation? European Journal of Personality, 22, 185–209. http://dx.doi.org/10.1002/per.676

Stericker, A., & LeVesconte, S. (1982). Effect of brief training on sex-related differences in visual-spatial skill. Journal of Personality and Social Psychology, 43(5), 1018–1029. https://doi.org/10.1037/0022-3514.43.5.1018

Stewart, C., Root, M. M., Koriakin, T., Choi, D., Luria, S. R., Bray, M. A., Sassu, K. Maykel, C., O´Rourke, P., & Courville, T. (2017). Biological gender differences in students’ errors on mathematics achievement tests. Journal of Psychoeducational Assessment, 35(1-2), 47-56. https://doi.org/10.1177/0734282916669231

Stumpf, H. (1993). Performance factors and gender-related differences in spatial ability: Another assessment. Memory & Cognition, 21(6), 828-836. https://doi.org/10.3758/BF03202750

Thurstone, L. L., & Thurstone, T. G. (1943). Chicago tests of primary mental abilities: Manual of instructions. Science Research Association.

Thurstone, L. L., & Thurstone, T. G. (1976). P.M.A.: Aptitudes Mentales Primarias. TEA.

Voyer, D., Rodgers, M. A., & McCormick, P. A. (2004). Timing conditions and the magnitude of gender differences on the Mental Rotations Test. Memory & Cognition, 32(1), 72-82. https://doi.org/10.3758/BF03195821

Voyer, D., & Saunders, K. A. (2004). Gender differences on the mental rotations test: A factor analysis. Acta Psychologica, 117(1), 79-94. https://doi.org/10.1016/j.actpsy.2004.05.003

Voyer, D., & Voyer, S.D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140(4), 1174-1204. https://doi.org/10.1037/a0036620

Wach, F. S., Spengler, M., Gottschling, J., & Spinath, F. M. (2015). Sex differences in secondary school achievement — The contribution of self-perceived abilities and fear of failure. Learning and Instruction, 36, 104–112. http://dx.doi.org/10.1016/j.learninstruc.2015.01.005

Wu, H., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88, 465-492. https://doi.org/10.1002/sce.10126

Xu, X., Kim, E. S., & Lewis, J. E. (2016). Sex difference in spatial ability for college students and exploration of measurement invariance. Learning and Individual Differences, 45, 176-184. https://doi.org/10.1016/j.lindif.2015.11.015

Yarbrough, J. L., Cannon, L., Bergman, S., Kidder-Ashley, P., & McCane-Bowling, S. (2017). Let the data speak: Gender differences in math curriculum-based measurement. Journal of Psychoeducational Assessment, 35(6), 568-580. https://doi.org/10.1177/0734282916649122

Yoon, S. Y., & Mann, E. L. (2017). Exploring the spatial ability of undergraduate students: Association with gender, STEM majors, and gifted program membership. Gifted Child Quarterly, 61(4), 313-327. https://doi.org/10.1177/0016986217722614

Publicado

2023-06-13

Número

Sección

Estudios