Integrodifferential equations of mixed type on time scales with Delta-HK and Delta-HKP integrals

Authors

  • Aneta Sikorska-Nowak Adam Mickiewicz Univ., Poznan, Poland

DOI:

https://doi.org/10.58997/ejde.2023.29

Keywords:

Integrodifferential equations, nonlinear Volterra integral equation, time scales, Henstock-Kurzweil delta integral, HL delta integral, Banach space, Henstock-Kurzweil-Pettis delta integral, fixed point, measure of noncompactness, Caratheodory solutions, pseudo-solution

Abstract

In this article we prove the existence of solutions to the integrodifferential equation of mixed type \begin{gather*}x^\Delta (t)=f \Big( t,x(t), \int_0^t k_1 (t,s)g(s,x(s)) \Delta s, \int_0^a k_2(t,s)h(s,x(s)) \Delta s \Big),\cr x(0)=x_0, \quad x_0 \in E,\; t \in I_a=[0,a] \cap \mathbb{T},\; a>0, \end{gather*} where \(\mathbb{T}\) denotes a time scale (nonempty closed subset of real numbers \(\mathbb{R}\)), \(I_a\) is a time scale interval. In the first part of this paper functions \(f,g,h\) are Caratheodory functions with values in a Banach space E and integrals are taken in the sense of Henstock-Kurzweil delta integrals, which generalizes the Henstock-Kurzweil integrals. In the second part f, g, h, x are weakly-weakly sequentially continuous functions and integrals are taken in the sense of Henstock-Kurzweil-Pettis delta integrals. Additionally, functions f, g, h satisfy some boundary conditions and conditions expressed in terms of measures of noncompactness.

For more information see https://ejde.math.txstate.edu/Volumes/2023/29/abstr.html

References

R. P. Agarwal, M. Bohner; Basic calculus on time scales and some of its applications, Result Math. 35 (1999), 3-22. https://doi.org/10.1007/BF03322019

R. P. Agarwal, M. Bohner, A. Peterson; Inequalities on time scales, a survey, Math. Inequal. Appl., 4 (4) (2001), 535-557. https://doi.org/10.7153/mia-04-48

R. P. Agarwal, D. O'Regan; Difference equations in Banach spaces, J. Austral. Math. Soc. (A), 64 (1998), 277-284. https://doi.org/10.1017/S1446788700001762

R. Agarwal, D. O'Regan, A. Sikorska-Nowak; The set of solutions of integrodifferential equations and the Henstock - Kurzweil - Pettis integral in Banach spaces, Bull. Aust. Math.Soc., 78 (2008), 507-522. https://doi.org/10.1017/S0004972708000944

E. Akin-Bohner, M. Bohner, F. Akin; Pachpate inequalities on time scale, J. Inequal. Pure and Appl. Math. 6 (1) Art. 6, 2005.

A. Ambrosetti; Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova, 39 (1967), 349-361.

F. M. Atici, D. C. Biles, A. Lebedinsky; An application of time scales to economics, Math. Comput. Model., 43 (2006), no. 7-8, 718 -726. https://doi.org/10.1016/j.mcm.2005.08.014

J. Bana's, K. Goebel; Measures of Noncompactness in Banach spaces, Lecture Notes in Pure and Appl. Math. 60 Dekker, New York and Basel, 1980.

M. Bohner, A. Peterson; Dynamic Equations on Time Scales, An Introduction with Applications, Birkäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1

M. Bohner, A. Peterson; Advances in Dynamic Equations on Time Scales, Birkäuser, Boston, 2003. https://doi.org/10.1007/978-0-8176-8230-9

A. Cabada, D. R. Vivero; Expression of the Lebesgue ∆-integral on time scales as a usual Lebesgue integral; applications of the calculus of ∆-antiderivatives, Math. Comp. Modell. 43 (2006) 194-207. https://doi.org/10.1016/j.mcm.2005.09.028

S. S. Cao; The Henstock integral for Banach valued functions, SEA Bull. Math. 16 (1992), 36-40.

M. Cichoń; On integrals of vector-valued functions on time scales, Commun. Math. Anal. 11(1) (2011), 94-110.

M. Cichoń, I. Kubiaczyk; On the set of solutions of the Cauchy problem in Banach spaces, Archiv der Mathematik, vol. 63 (1993), no. 3, pp. 251-257. https://doi.org/10.1007/BF01189827

C. Corduneanu; Integral Equations and Applications, Cambridge University Press, Cam- bridge, 1991, MR 92h:45001. https://doi.org/10.1017/CBO9780511569395

E. Cramer, V. Lakshmikantham, A. R.Mitchell; On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Analysis. Theory, Methods & Applications, vol. 2 (1978), no. 2, pp. 169-177. https://doi.org/10.1016/0362-546X(78)90063-9

L. Erbe, A. Peterson; Green's functions and comparison theorems for differential equations on measure chains, Dynam. Contin. Discrete Impuls. Systems 6 (1) (1999), 121-137.

D. Franco; Green's functions and comparison results for impulsive integrodifferential equations, Nonlin. Anal. Th. Meth. Appl. 47 (2001), 5723-5728. https://doi.org/10.1016/S0362-546X(01)00674-5

D. Guo, V. Lakshmikantham, X. Liu; Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, Dordrecht, 1996. https://doi.org/10.1007/978-1-4613-1281-9

D. Guo; Initial value problems for second-order integrodifferential equations in Banach spaces, Nonlin. Anal. Th. Meth. Appl. 37 (1999), 289-300. https://doi.org/10.1016/S0362-546X(98)00047-9

D. Guo, X. Liu; Extremal solutions of nonlinear impulsive integrodifferential equations in Banach spaces, J. Math. Anal. Appl. 177 (1993), 538-553.https://doi.org/10.1006/jmaa.1993.1276

G. Sh. Guseinov; Integration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127. https://doi.org/10.1016/S0022-247X(03)00361-5

R. Henstock; The General Theory of Integration, Oxford Math. Monographs, Clarendon Press, Oxford, 1991.

S. Hilger; EinßMakettenkalkül mit Anvendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität at Würzburg, Germany, 1988.

S. Hilger; Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56. https://doi.org/10.1007/BF03323153

B. Kaymakcalan, V. Lakshmikantham, S. Sivasundaram; Dynamical Systems on Measure Chains, Kluwer Akademic Publishers, Dordrecht, 1996. https://doi.org/10.1007/978-1-4757-2449-3

V. Kac, P. Cheung; Quantum Calculus, Springer, New York, 2001. https://doi.org/10.1007/978-1-4613-0071-7

V. B. Kolmanovskii, E. Castellanos-Velasco, J.A. Torres-Munoz; A survey: stability and boundedness of Volterra difference equations, Nonlin. Anal. Th. Meth. Appl. 53 (2003), 669- 681. https://doi.org/10.1016/S0362-546X(02)00272-9

I. Kubiaczyk, A. Sikorska-Nowak; Existence of solutions of the dynamic Cauchy problem of infinite time scale intervals, Discuss. Math. Differ. Incl. 29 (2009), 113-126. https://doi.org/10.7151/dmdico.1108

I. Kubiaczyk; Kneser type theorems for ordinary differential equations in Banach spaces, Journal of Differential Equations, vol. 45 (1982), no. 2, pp. 139-146. https://doi.org/10.1016/0022-0396(82)90060-2

I. Kubiaczyk, S. Szufla; Kneser's theorem for weak solutions of ordinary differential equations in Banach spaces, Publications de l'Institut Mathématique, vol. 32 (1982), pp. 99-103.

T. Kulik, C. C. Tisdell; Volterra integral equations on time scales: basic qualitative and quantitative results with applications to initial value problems on unbounded domains, Inter- national Journal of Difference Equations, vol. 3 (2008), no. 1, pp. 103-133.

V. Lakshmikantham, S. Sivasundaram, B. Kaymarkcalan; Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht, 1996. https://doi.org/10.1007/978-1-4757-2449-3

P. Y. Lee; Lanzhou Lectures on Henstock Integration, Ser. Real Anal. 2, World Sci., Singapore, 1989.

L. Liu, C.Wu, F. Guo; A unique solution of initial value problems for first order impulsive integrodifferential equations of mixed type in Banach spaces, J. Math. Anal. Appl. 275 (2002), 369-385. https://doi.org/10.1016/S0022-247X(02)00366-9

X. Liu, D. Guo; Initial value problems for first order impulsive integro-differential equations in Banach spaces, Comm. Appl. Nonlinear Anal. 2 (1995), 65-83.

H. Lu; Extremal solutions of nonlinear first order impulsive integrodifferential equations in Banach spaces, Indian J. Pure Appl. Math. 30 (1999), 1181-1197.

A. R. Mitchell, C. Smith; An existence theorem for weak solutions of differential equations in Banach spaces, in Nonlinear Equations in Abstract Spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex, 1977), V. Lakshmikantham, Ed., pp. 387-403, Academic Press, New York, NY, USA, 1978. https://doi.org/10.1016/B978-0-12-434160-9.50028-X

H. Mönch; Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlin. Anal. Th. Meth. Appl. 4 (1980), 985-999. https://doi.org/10.1016/0362-546X(80)90010-3

M. I. Noori, A. H. Mahmood; On a nonlinear Volterra-Fredholm integrodifferential equation on time scales, Open Access Library Journal 2020, Volume 7, e6103 https://doi.org/10.4236/oalib.1106103

D. B. Pachpatte; Fredholm type integrodifferential equations on time scales, Electronic Journal of Differential Equations, Vol. 2010 (2010), No. 140, pp. 1-10. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

A. Peterson, B. Thompson; Henstock-Kurzweil delta and nabla integrals, J. Math. Anal. Appl. 323 (2006), 162-178. https://doi.org/10.1016/j.jmaa.2005.10.025

B. N. Sadovskii; Limit-compact and condesing operators, Russian Math. Surveys 27 (1972), 86-144. https://doi.org/10.1070/RM1972v027n01ABEH001364

S. Schwabik; Generalized Ordinary Differential Equations, Word Scientic, Singapore, 1992. https://doi.org/10.1142/1875

A.Sikorska-Nowak, G. Nowak; Nonlinear integrodifferential equations of mixed type in Ba- nach spaces, International Journal of Mathematics and Mathematical Sciences, 2007, ID 65947, https://doi.org/10.1155/2007/65947

A. Sikorska-Nowak; Existence theory for integrodifferential equations and Henstock-Kurzweil integral in Banach spaces, J. Appl. Math., article ID 31572 (2007), 1-12. https://doi.org/10.1155/2007/31572

A. P. Solodov; On condition of differentiability almost everywhere for absolutely continuous Banach-valued function, Moscow Univ. Math. Bull. 54 (1999), 29-32.

G. Song; Initial value problems for systems of integrodifferential equations in Banach spaces, J. Math. Anal. Appl. 264 (2001), 68-75. https://doi.org/10.1006/jmaa.2001.7630

V. Spedding; Taming Nature's Numbers, New Scientist, July 19, 2003, 28-31.

A. Szep; Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Scientiarum Mathematicarum Hungarica, vol. 6 (1971), pp. 197-203.

S. Szufla; Measure of noncompactness and ordinary differential equations in Banach spaces, Bull. Acad. Poland Sci. Math. 19 (1971), 831-835.

S. Szufla; Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bulletin of the Polish Academy of Sciences. Mathematics, vol. 26 (178), no. 5, pp. 407-413.

C. C. Tisdell, A. Zaidi; Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlin. Anal. Th. Meth. Appl., 68 (2008), 3504-3524. https://doi.org/10.1016/j.na.2007.03.043

Y. Xing, M. Han, G. Zheng; Initial value problem for first-order integrodifferential equation of Volterra type on time scales, Nonlin. Anal. Th. Meth. Appl. 60 (2005), 429-442. https://doi.org/10.1016/S0362-546X(04)00369-4

Y. Xing, W. Ding, M. Han; Periodic boundary value problems of integrodifferential equation of Volterra type on time scales, Nonlin. Anal. Th. Meth. Appl. 68 (2008), 127-138. https://doi.org/10.1016/j.na.2006.10.036

H. Xu, J. J. Nieto; Extremal solutions of a class of nonlinear integrodifferential equations in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 2605-2614. https://doi.org/10.1090/S0002-9939-97-04149-X

S. Zhang; The unique existence of periodic solutions of linear Volterra difference equations, J. Math. Anal. Appl. 193 (1995), 419-430. https://doi.org/10.1006/jmaa.1995.1244

Downloads

Published

2023-03-14 — Updated on 2023-06-15

Versions

Issue

Section

Articles

Categories

How to Cite

Integrodifferential equations of mixed type on time scales with Delta-HK and Delta-HKP integrals. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 29, 1-20. https://doi.org/10.58997/ejde.2023.29 (Original work published 2023)