On the geometry of flag Hilbert–Poincaré series for matroids
Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 623-638.

We extend the definition of coarse flag Hilbert–Poincaré series to matroids; these series arise in the context of local Igusa zeta functions associated to hyperplane arrangements. We study these series in the case of oriented matroids by applying geometric and combinatorial tools related to their topes. In this case, we prove that the numerators of these series are coefficient-wise bounded below by the Eulerian polynomial and equality holds if and only if all topes are simplicial. Moreover this yields a sufficient criterion for non-orientability of matroids of arbitrary rank.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.276
Classification: 05B35, 52C40
Keywords: Coarse flag polynomial, Eulerian polynomials, Igusa zeta functions, oriented matroids
Kühne, Lukas 1; Maglione, Joshua 1

1 Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_3_623_0,
     author = {K\"uhne, Lukas and Maglione, Joshua},
     title = {On the geometry of flag {Hilbert{\textendash}Poincar\'e} series for matroids},
     journal = {Algebraic Combinatorics},
     pages = {623--638},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.276},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.276/}
}
TY  - JOUR
AU  - Kühne, Lukas
AU  - Maglione, Joshua
TI  - On the geometry of flag Hilbert–Poincaré series for matroids
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 623
EP  - 638
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.276/
DO  - 10.5802/alco.276
LA  - en
ID  - ALCO_2023__6_3_623_0
ER  - 
%0 Journal Article
%A Kühne, Lukas
%A Maglione, Joshua
%T On the geometry of flag Hilbert–Poincaré series for matroids
%J Algebraic Combinatorics
%D 2023
%P 623-638
%V 6
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.276/
%R 10.5802/alco.276
%G en
%F ALCO_2023__6_3_623_0
Kühne, Lukas; Maglione, Joshua. On the geometry of flag Hilbert–Poincaré series for matroids. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 623-638. doi : 10.5802/alco.276. https://alco.centre-mersenne.org/articles/10.5802/alco.276/

[1] Ardila, Federico; Sanchez, Mario Valuations and the Hopf Monoid of Generalized Permutahedra, Int. Math. Res. Not. IMRN (2022) | DOI

[2] Barakat, Mohamed; Behrends, Reimer; Jefferson, Christopher; Kühne, Lukas; Leuner, Martin On the generation of rank 3 simple matroids with an application to Terao’s freeness conjecture, SIAM J. Discrete Math., Volume 35 (2021) no. 2, pp. 1201-1223 | DOI | MR | Zbl

[3] Bayer, Margaret M. The cd-index: a survey, Polytopes and discrete geometry (Contemp. Math.), Volume 764, Amer. Math. Soc., Providence, RI, 2021, pp. 1-19 | DOI | MR | Zbl

[4] Björner, Anders; Las Vergnas, Michel; Sturmfels, Bernd; White, Neil; Ziegler, Günter M. Oriented matroids, Encyclopedia of Mathematics and its Applications, 46, Cambridge University Press, Cambridge, 1999, xii+548 pages | DOI | MR

[5] Brenti, Francesco; Welker, Volkmar f-vectors of barycentric subdivisions, Math. Z., Volume 259 (2008) no. 4, pp. 849-865 | DOI | MR | Zbl

[6] Budur, Nero; Saito, Morihiko; Yuzvinsky, Sergey On the local zeta functions and the b-functions of certain hyperplane arrangements, J. Lond. Math. Soc. (2), Volume 84 (2011) no. 3, pp. 631-648 (With an appendix by Willem Veys) | DOI | MR | Zbl

[7] Csima, József; Sawyer, Eric T. There exist 6n/13 ordinary points, Discrete Comput. Geom., Volume 9 (1993) no. 2, pp. 187-202 | DOI | MR | Zbl

[8] Cuntz, Michael; Geis, David Combinatorial simpliciality of arrangements of hyperplanes, Beitr. Algebra Geom., Volume 56 (2015) no. 2, pp. 439-458 | DOI | MR | Zbl

[9] Derksen, Harm; Fink, Alex Valuative invariants for polymatroids, Adv. Math., Volume 225 (2010) no. 4, pp. 1840-1892 | DOI | MR

[10] Dorpalen-Barry, Galen; Maglione, Joshua; Stump, Christian The Poincaré-extended ab-index, 2023 | arXiv

[11] Ehrenborg, Richard; Karu, Kalle Decomposition theorem for the cd-index of Gorenstein posets, J. Algebraic Combin., Volume 26 (2007) no. 2, pp. 225-251 | DOI | MR | Zbl

[12] Elias, Ben; Proudfoot, Nicholas; Wakefield, Max The Kazhdan-Lusztig polynomial of a matroid, Adv. Math., Volume 299 (2016), pp. 36-70 | DOI | MR | Zbl

[13] Eur, Christopher Divisors on matroids and their volumes, J. Combin. Theory Ser. A, Volume 169 (2020), Paper no. 105135, 31 pages | DOI | MR | Zbl

[14] Ferroni, Luis; Schröter, Benjamin Valuative invariants for large classes of matroids (2022) | arXiv

[15] Fukuda, Komei; Tamura, Akihisa; Tokuyama, Takeshi A theorem on the average number of subfaces in arrangements and oriented matroids, Geom. Dedicata, Volume 47 (1993) no. 2, pp. 129-142 | DOI | MR | Zbl

[16] Gawrilow, Ewgenij; Joswig, Michael polymake: a framework for analyzing convex polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997) (DMV Sem.), Volume 29, Birkhäuser, Basel, 2000, pp. 43-73 | DOI | MR | Zbl

[17] Jensen, David; Kutler, Max; Usatine, Jeremy The motivic zeta functions of a matroid, J. Lond. Math. Soc. (2), Volume 103 (2021) no. 2, pp. 604-632 | DOI | MR | Zbl

[18] Kastner, Lars; Panizzut, Marta Hyperplane Arrangements in polymake, Mathematical Software – ICMS 2020 (Bigatti, Anna Maria; Carette, Jacques; Davenport, James H.; Joswig, Michael; de Wolff, Timo, eds.), Springer International Publishing, Cham (2020), pp. 232-240 | DOI | Zbl

[19] Maglione, Joshua; Voll, Christopher Flag Hilbert–Poincaré series of hyperplane arrangements and their Igusa zeta functions (2021, to appear in Israel J. Math.) | arXiv

[20] Matsumoto, Yoshitake; Moriyama, Sonoko; Imai, Hiroshi; Bremner, David Matroid enumeration for incidence geometry, Discrete Comput. Geom., Volume 47 (2012) no. 1, pp. 17-43 | DOI | MR | Zbl

[21] Orlik, Peter; Terao, Hiroaki Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 300, Springer-Verlag, Berlin, 1992, xviii+325 pages | DOI | MR

[22] Petersen, T. Kyle Eulerian numbers, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser/Springer, New York, 2015, xviii+456 pages (With a foreword by Richard Stanley) | DOI | MR

[23] Rossmann, Tobias; Voll, Christopher Groups, graphs, and hypergraphs: average sizes of kernels of generic matrices with support constraints (2019, to appear in Mem. Amer. Math. Soc.) | arXiv

[24] Stanley, Richard P. Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997, xii+325 pages (With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original) | DOI | MR

[25] van der Veer, Robin Combinatorial analogs of topological zeta functions, Discrete Math., Volume 342 (2019) no. 9, pp. 2680-2693 | DOI | MR | Zbl

[26] Varchenko, Alexander N. The numbers of faces of a configuration of hyperplanes, Dokl. Akad. Nauk SSSR, Volume 302 (1988) no. 3, pp. 527-530

Cited by Sources: