Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
Detergents and Interface Science
Monolayer Behavior of Binary Systems of Lactonic and Acidic Forms of Sophorolipids: Thermodynamic Analyses of Langmuir Monolayers and AFM Study of Langmuir–Blodgett Monolayers
Tomohiro ImuraDaisuke KawamuraToshiaki TairaTomotake MoritaTokuma FukuokaKenichi AburaiHideki SakaiMasahiko AbeDai Kitamoto
Author information
JOURNAL FREE ACCESS

2014 Volume 63 Issue 1 Pages 67-73

Details
Abstract

The synergic effect and miscibility of the lactonic and acidic forms of sophorolipids (SLs) produced by Starmerella bombicola NBRC 10243 were first evaluated through atomic force microscopy (AFM), together with the Langmuir monolayer technique. The π–A isotherm of a pure lactonic sophorolipid (LS) monolayer mostly exhibited a liquid expanded monolayer, while that of an acidic sophorolipid (AS) monolayer showed a liquid condensed monolayer, suggesting that the lactonization of SLs makes the molecules more bulky and prevents them from adopting a close-packed arrangement. Plots of the mean area per molecule of mixed LS/AS monolayers gave positive deviations from the ideal curves, implying that the LS and AS molecules are miscible. Interestingly, the positive deviation of excess area (Aex) from ideality was most significant at a mole fraction (XAS) of 0.3, which closely resembles the composition of the LS/AS mixture secreted by S. bombicola in culture. The AFM images of mixed LS/AS monolayers transferred at 20 mN/m revealed no phase-separated microdomain structures, but rather showed small protruding objects for all compositions, indicating that LS and AS are partially miscible, as predicted by the positive deviations from the ideal curves. Cross-section analysis of the AFM images indicated that the observed protruding objects are AS-rich monolayers formed on the LS/AS monolayer. Our results clearly demonstrate that AFM combined with the Langmuir technique is useful for the exploration of the miscibility and synergic effects of microbial products.

Content from these authors
© 2014 by Japan Oil Chemists' Society
Previous article Next article
feedback
Top