Computational Fishing and Structural Analysis of MIPS Protein from Two Important Plant Groups

Article Preview

Abstract:

Myo Inositol 1-Phosphate Synthase (MIPS), which catalyzes the first step of inositol metabolism, has been reported from a diverse range of organism like bacteria to human including different groups of plants and animals. The present work is carried out to explore and analyze structural forms of the respective MIPS proteins from complete sequenced genome or proteome available on database of one representative from two important plant groups viz. bryophyte (Physcomitrella patens) and pteridophyte (Selaginella moellendorffii). Previously reported characteristic MIPS sequences was used to identify it’s homolog ones from those members under study. The explored sequences compared with a number of MIPS varieties from other plant members to study the conserveness or evolution of the protein/enzyme. ProtParam tool provided necessary theoretical physicochemical data of the predicted proteins, the three-dimensional structures were predicted through homology modelling with identified amino acid data. Structural evaluation and stereochemical analyses were performed using ProSA-web displaying Z-scores and Molprobity visualising Ramachandran plot.

Info:

Pages:

18-27

Citation:

Online since:

July 2015

Authors:

Export:

[1] Basak A, Jha T. B. & Adhikari J., Biosynthesis of myo-inositol in lycopods: characteristics of the pteridophytic l-myo inositol 1-phosphate synthase and myoinositol- 1-phosphate phosphatase from the strobili of Lycopodium clavatum and Selaginella monospora, Acta Physiol Plant 34 (2012) 1579-1582

DOI: 10.1007/s11738-012-0924-z

Google Scholar

[2] Basu P., Ganguli S., Gupta S., Datta A., Exploring Computational Protein Fishing (CPF) to identify Argonaute Proteins from Sequenced Crop Genomes International Letters of Natural Sciences Vol 33 (2015) pp.27-36

DOI: 10.18052/www.scipress.com/ilns.33.27

Google Scholar

[3] Balasubramanian J, Shahul Hammed MK, Tamilselvan R and Vijayakumar N., Artificial neural network: A forecast in pharmaceutical science. Nerve (2012) 1:7-12

Google Scholar

[4] Castrignanò T, D'Onorio P, Meo D, Cozzetto1 D, Talamo1 I G, and Tramontano A., The PMDB Protein Model Database Nucleic Acids Research Volume 34, Issue suppl (2005) Pp. D306-D309

DOI: 10.1093/nar/gkj105

Google Scholar

[5] Chen et al., MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica D66 (2010) 12-21.

Google Scholar

[6] Chhetri, D. R, Mukherjee A. K, Adhikari J., Partial purification and characterization of L-myo-inositol-1-phosphate synthase of pteridophytic origin. Acta Physiol. Plant., 28 (2006) 101-107.

DOI: 10.1007/s11738-006-0036-8

Google Scholar

[7] Chhetri D. R, Choudhuri M, Mukherjee AK, Adhikari J., L-myo-inositol-1-phosphate synthase: partial purification and characterization from Gleichenia glauca. Biol. Plant. 49 (2005) 59-63.

DOI: 10.1007/s10535-005-0063-0

Google Scholar

[8] Chhetri D. R, Yonzone S, Mukherjee A. K, Adhikari J., L-myo-inositol-1-phosphate synthase from Marchantia nepalensis: partial purification and properties, Gen. Appl. Plant physiology, (2006) 32(3-4), 153-164

Google Scholar

[9] Corpet F., 1988, Multiple sequence alignment with hierarchical clustering"  Nucl. Acids Res., 16 (22), 10881-10890

DOI: 10.1093/nar/16.22.10881

Google Scholar

[10] Eswar N., Marti-Renom M. A., Webb B., Madhusudhan M. S., Eramian D., Shen M., Pieper U., Sali A., Comparative Protein Structure Modeling With MODELLER. Current Protocols in Bioinformatics, John Wiley & Sons, Inc., Supplement 15 (2006) 5.6.1-5.6.30

DOI: 10.1002/0471250953.bi0506s15

Google Scholar

[11] Felsenstein J., Confidence limits on phylogenies: An approach using the bootstrap Evolution 39 (1985) 783-791.

DOI: 10.1111/j.1558-5646.1985.tb00420.x

Google Scholar

[12] Gasteiger E., Protein Identifi cation and Analysis Tools on the ExPASy Server. In: John M. Walker ed, The Proteomics Protocols Handbook, Humana Press, (2005) 571-607

DOI: 10.1385/1-59259-890-0:571

Google Scholar

[13] Gill SC., Von Hippel PH Extinction coefficient, Anal Biochem 182 (1989) 319- 328.

Google Scholar

[14] Ikai A. J., Thermo stability and aliphatic index of globular proteins. J Biochem 88 (1980) 1895-1898. PMid:7462208

Google Scholar

[15] Jones D. T., Protein structure prediction in genomics. Brief Bioinform 2(2) (2001) 111-125

Google Scholar

[16] Kleiger G, and Eisenberg D., GXXXG and GXXXA Motifs Stabilize FAD and NAD (P)-binding Rossmann Folds Through C α–H⋯ O Hydrogen Bonds and van der Waals Interactions J. Mol. Biol. 323 (2002) 69-76

DOI: 10.1016/s0022-2836(02)00885-9

Google Scholar

[17] Kyte J, Doolottle RF, A simple method for displaying the hydropathic character of a protein, J Mol Biol 157 (1982) 105- 132

DOI: 10.1016/0022-2836(82)90515-0

Google Scholar

[18] Majumder A.L., Chatterjee A., Ghosh D.K., Majee M., Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 553 (2003) 3–10

DOI: 10.1016/s0014-5793(03)00974-8

Google Scholar

[19] Majumder A.L., Johnson M.D., Henry S.A., 1L-myo-inositol 1-phosphate synthase. Acta Biochim. Biophys. 1348 (1997) 245–256.

DOI: 10.1016/s0005-2760(97)00122-7

Google Scholar

[20] Matthew DG and Mark SH., Quaternary structure of rice non-symbiotic hemoglobin. J Biol Chem 276 (2001) 6834-6839

Google Scholar

[21] Norman R.A., McAlister M.S.B., Murray Rust J., Movahedzadeh F., Stoker N.G., & McDonald N.Q., Crystal structure of inositol 1 phosphate synthase from Mycobacterium tuberculosis, a key enzyme in phosphotidyl inositol synthesis. Structure ,vol10 (2002) 393-402

DOI: 10.1016/s0969-2126(02)00718-9

Google Scholar

[22] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE., UCSF Chimera--a visualization system for exploratory research and analysis.  J Comput Chem. 25(13) (2004) 1605-12

DOI: 10.1002/jcc.20084

Google Scholar

[23] Ramachandran GN, Ramakrishnan C and Sasisek-haran V Stereochemistry of polypeptide chain configurations. J Mol Biol 7 (1963) 95-99

Google Scholar

[24] Banerjee R, Dhani R, Chhetri D, and Adhikari J, Occurrence of myo-inositol-1-phosphate phosphatase in pteridophytes: characteristics of the enzyme from the reproductive pinnules of Dryopteris filix-mas (L.) Schott, Braz. J. Plant Physiol., 19(2) (2007) 109-117

DOI: 10.1590/s1677-04202007000200003

Google Scholar

[25] Sneath P.H.A, and Sokal R.R., Numerical Taxonomy. Freeman, San Francisco. (1973)

Google Scholar

[26] Stein A.J, & Geiger J.H., The crystal structure and mechanism of L myo inositol 1 phosphate synthase. Journal of Biological Chemistry 277 (2002) 9484-9491

DOI: 10.1074/jbc.m109371200

Google Scholar

[27] Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30 (2013) 2725-2729.

DOI: 10.1093/molbev/mst197

Google Scholar

[28] Vincentz M, Bandeira-Kobarg C, Gauer L, Schlogl P and Leite A., Evolutionary pattern of angiosperm bZIP factors homologous to the maize Opaque2 regulatory protein. J Mol Evol 56 (2003) 105-116

DOI: 10.1007/s00239-002-2386-1

Google Scholar

[29] Wiederstein M. & Sippl M.J, ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research 35 (2007) W407-W410

DOI: 10.1093/nar/gkm290

Google Scholar

[30] Zuckerkandl E. and Pauling L, Evolutionary divergence and convergence in proteins. Edited in Evolving Genes and Proteins by V. Bryson and H.J. Vogel, pp Academic Press (1965) 97-166

DOI: 10.1016/b978-1-4832-2734-4.50017-6

Google Scholar