The Planetary Vaporization Event Hypothesis: Supercharging Earth’s Geothermal Core, Identifying Side Effects Blast Patterns, and Inferring how to Find Earth-Like Planets or Identifying Super Charged Geothermal Cores and their Byproduct Blast Patterns

Article Preview

Abstract:

The supercharged nature of the Earth’s geothermal core can be demonstrated by three thought experiments exhibiting it is tremendously more powerful than any other terrestrial object in the solar system (planet or moon). Identifying a minimum of four byproduct asteroid blast patterns linked to the formation of Earth’s supercharged geothermal core is critical to properly identifying stars that also have these four byproduct asteroid blast patterns. These stars are the most likely to host an Earth-like planet qualified by having a supercharged geothermal core. The Planetary Vaporization-Event (PVE) Hypothesis provides a basis for correlation between the supercharged nature of Earth’s geothermal core and at least 14 listed side effects: (1) the asteroid-wide/planet-scale homogenization and lack thereof of 182W ε for Earth, the Moon, Mars and meteors, (2) the primary and secondary shifting of Earth’s tectonic plates, (3) the solar system wide displacement of Earth’s wayward moons (including Ceres, Pluto, Charon and Orcus) outgassing identical samples of ammoniated phyllosilicates, (4) the formation of asteroids at 100+ times the expected density of a nebular cloud vs. pre-solar grains formation density at the expected density of a nebular cloud, (5) three distinct formation timestamps for all known asteroids within a 5 million year window 4.55+ billion years ago, (6) the estimated formation temperature of CAI at 0.86 billion Kelvin and (7) the remaining chondritic meteorite matrix flash vaporizing at 1,200–1,900 °C, (8) followed by rapid freezing near 0 K, (9) the development of exactly 2 asteroid belts and a swarm of non-moon satellites, (10) particulate size distinction between the 2 asteroid belts of small/inner, large/outer, (11) the proximity of the Trojan Asteroid Groups to the Main Asteroid Belt, (12) observation of a past or present LHB, (13) the development of annual meteor showers for Earth proximal to apogee and/or perigee, (14) the Sun being the most-likely object struck by an asteroid in the inner solar system. Through better understanding of the relevant data at hand and reclassification of the byproducts of supercharging the core of a planet, at least 5 new insights can be inferred and are listed as: (1) the original mass, (2) distance and (3) speed of Earth Mark One, (4) the original order of Earth’s multi-moon formation and (5) the high probability of finding detectable signs of life on a planet orbiting the stars Epsilon Eridani and Eta Corvi. There are at least 6 popular hypothesis that the PVE Hypothesis is in conflict with, listed they are: (1) a giant impact forming the Moon, (2) asteroids being the building blocks of the solar system, (3) the Main Asteroid Belt being the result of a planet that never formed, (4) the LHB being a part of the accretion disk process, (5) the heat in Earth’s core coming primarily from the decay of radioactive elements, (6) the Oort Cloud being the source of ice comets.

Info:

Pages:

1-21

Citation:

Online since:

October 2021

Authors:

Export:

* - Corresponding Author

[1] Alexander, C. M. O'D., Grossman, J. N., Ebel, D. S. et al., 2008. The formation conditions of chondrules and chondrites. Science 320 (5883) 1617–1619.

DOI: 10.1126/science.1156561

Google Scholar

[2] Alley, C. O., Bender, P. L, Chang, R. F. et al., 1969. Laser ranging retroreflector. In: Apollo 11: Preliminary Science Report, NASA SP-214. NASA, Washington, DC, p.163–182.

Google Scholar

[3] Amelin, Y., Krot, A. N., Hutcheon, I. D. et al., 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297 (5587) 1678–168.

DOI: 10.1126/science.1073950

Google Scholar

[4] Amelin, Y., Krot, A., 2007. Pb isotopic age of the Allende chondrules. Meteoritics & Planetary Science 42 (7–8) 1321–1335.

DOI: 10.1111/j.1945-5100.2007.tb00577.x

Google Scholar

[5] Anders, E., 1964. Origin, age and composition of meteorites. Space Science Reviews 3 (5–6) 583–714.

Google Scholar

[6] Avice, G., Meier, M. M. M., Marty, B. et al., 2015. A comprehensive study of noble gases and nitrogen in Hypatia, a diamond-rich pebble from SW Egypt. Earth and Planetary Science FFLetters 432C (October) 243–253.

DOI: 10.1016/j.epsl.2015.10.013

Google Scholar

[7] Airapetian, V.S., Jackman, C.H., Mlynczak, M., 2017. Atmospheric Beacons of Life from Exoplanets Around G and K Stars. Sci Rep 7, 14141. https://doi.org/10.1038/s41598-017- 14192-4 arXiv:astro-ph/0004117v1 (https://arxiv.org/abs/astro-ph/0004117)

DOI: 10.1038/s41598-017-14192-4

Google Scholar

[8] Backman, D., Marengo, M., Stapelfeldt, K. et al., 2008. Epsilon Eridani's planetary debris disk: Structure and dynamics based on Spitzer and CSO observations. The Astrophysical Journal 690 (2) 1522–1538

DOI: 10.1088/0004-637X/690/2/1522

Google Scholar

[9] Belyanin, G. A., Kramers, J. D., Andreoli, M. A. G. et al., 2017. Petrography of the carbonaceous, diamond-bearing stone ''Hypatia" from southwest Egypt: A contribution to the debate on its origin. Geochimica et Cosmochimica Acta 223 (February 15) 462– 492.

DOI: 10.1016/j.gca.2017.12.020

Google Scholar

[10] Bouvier, A., Wadhwa, B., 2010. The age of the solar system redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience 3 637–641.

DOI: 10.1038/ngeo941

Google Scholar

[11] Braga-Ribas,F., Sicardy, B., Ortiz, J., et al., 2013. The size, shape, albedo, density, and atmospheric limit of transneptunian object (50000) Quaoar from multi-chord stellar occultations. The Astrophysical Journal 773 (1) 26

DOI: 10.1088/0004-637X/773/1/26

Google Scholar

[12] Brasser, R., Mojzsis, S. J., Werner, S. C. et al., 2016. Late veneer and late accretion to the terrestrial planets. Earth and Planetary Science Letters 455 (December 1) 85–93. doi.org/.

DOI: 10.1016/j.epsl.2016.09.013

Google Scholar

[13] Brown, M. E., 2013a. The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. Astrophysics arXiv:1311.0553 [astro-ph.EP]. doi:10.1088/2041- 8205/778/2/L34

DOI: 10.1088/2041-8205/778/2/l34

Google Scholar

[14] Brown, M. E., 2013b. On the size, shape, and density of dwarf planet Makemake. Retrieved from https://arxiv.org/pdf/1304.1041v1.pdf

Google Scholar

[15] Brown, M. E., Schaller, E. L., 2007. The mass of dwarf planet Eris. Science 316, 1585.

DOI: 10.1126/science.1139415

Google Scholar

[16] Canup, R., Asphaug, E., 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature 412 (6848) 708–712.

DOI: 10.1038/35089010

Google Scholar

[17] Clague, D. A., Dalrymple, G. B., 1987. The Hawaiian-Emperor volcanic chain. Part 1. Geologic evolution. In R. W. Decker, T. L. Wright, P. H. Stauffer (Eds.), Volcanism in Hawaii: Papers to Commemorate the 75th Anniversary of the Founding of the Hawaiian Volcano Observatory. United States Geological Survey Professional Paper 1350, p.5–100.

Google Scholar

[18] Chang, Heon-Young. (2010). Titius-Bode's Relation and Distribution of Exoplanets. Journal of Astronomy and Space Sciences. 27. 1-10

DOI: 10.5140/JASS.2010.27.1.001

Google Scholar

[19] Connelly, J. N., Bizzarro, M., Krot, A. N. et al., 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338 (6107) 651–655.

DOI: 10.1126/science.1226919

Google Scholar

[20] Currie, D. G., Dell'Agnello, S., Delle Monache, G. O. et al., 2013. A lunar laser ranging retroreflector array for the 21st century. Nuclear Physics B Proceedings Supplements 243–244 (October–November) 218–228.

DOI: 10.1016/j.nuclphysbps.2013.09.007

Google Scholar

[21] Davies, J. H., Davies, D. R., 2010. Earth's surface heat flux. Solid Earth 1 (1) 5–24. doi:org/.

DOI: 10.5194/se-1-5-2010

Google Scholar

[22] Day, J. M. D., R. J. Walker, 2015. Highly siderophile element depletion in the Moon. Earth and Planetary Science Letters 423, 114–124.

DOI: 10.1016/j.epsl.2015.05.001

Google Scholar

[23] Domeier, M., Torsvik, T. H., 2014. Plate tectonics in the late Paleozoic. Geoscience Frontiers 5 (3) 303–350. doi:org/.

DOI: 10.1016/j.gsf.2014.01.002

Google Scholar

[24] Dones, L., Weissman, P. R., Levison, H. F. et al., 2004. Oort Cloud formation and dynamics. In:

Google Scholar

[25] D. Johnstone, F. C. Adams, D. N. C. Lin et al. (Eds.), Star Formation in the Interstellar Medium: In Honor of David Hollenbach, Chris McKee and Frank Shu, ASP Conference Proceedings, vol. 323. Astronomical Society of the Pacific, San Francisco, 371.

Google Scholar

[26] G. Duchene, P. Arriaga, M. Wyatt, G. Kennedy, B. Sibthorpe, C. Lisse, W. Holland, J. Wisniewski, M. Clampin, P. Kalas, C. Pinte, D. Wilner, M. Booth, J. Horner, B. Matthews, J. Greaves. 2014. Spatially resolved imaging of the two-component eta Crv debris disk with Herschel. The Astrophysical Journal 784 (2).Dye, S. T., 2012. Geoneutrinos and the radioactive power of the Earth. Reviews of Geophysics 50 (3) –19.

DOI: 10.1088/0004-637x/784/2/148

Google Scholar

[27] Fernandez, J. A., 1980. On the existence of a comet belt beyond Neptune. Monthly Notices of the Royal Astronomical Society 192 (3) 481–491

DOI: 10.1093/mnras/192.3.481

Google Scholar

[28] Fornasier, S., Lellouch, E., Müller, T., et al., 2013. TNOs are cool: A survey of the trans- Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of 9 bright targets at 70--500 micron. Astronomy and Astrophysics 555 A15 arXiv:1305.0449 [astro- ph.EP]

DOI: 10.1051/0004-6361/201321329

Google Scholar

[29] Gando, A., Gando, Y., Ichimura, K. et al. Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geosci 4, 647–651 (2011)

DOI: 10.1038/ngeo1205

Google Scholar

[30] Gomes, R., Levison, H. F., Tsiganis, K. et al., 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435 (May) 466–469.

DOI: 10.1038/nature03676

Google Scholar

[31] Grady, M. M., 2000. Catalogue of meteorites 5th ed. Cambridge, UK: Cambridge University Press.

Google Scholar

[32] Halliday, A. N., 2000. Hf-W chronometry and inner solar system accretion rates. Space Science Reviews 92 (1) 355–370.

DOI: 10.1007/978-94-011-4146-8_23

Google Scholar

[33] Herschel, W., 1807. Observations on the nature of the new celestial body discovered by Dr.

Google Scholar

[34] Olbers, and of the comet which was expected to appear last January in its return from the Sun. The Academy, London, p.260–266.

DOI: 10.1098/rstl.1807.0014

Google Scholar

[35] Hess, W. N., 1968. The radiation belt and magnetosphere. Blaisdell, Waltham, MA. Hewins, R. H,. Radomsky, P. M. 1990. Temperature conditions for chondrule formation.

Google Scholar

[36] Meteoritics 25 (4) 309–318.

Google Scholar

[37] Ignasi, R., 2010. The Sun and stars as the primary energy input in planetary atmospheres. In: Solar and Stellar Variability: Impact on Earth and Planets, Proceedings of the International Astronomical Union 5 (264) 3–18.

Google Scholar

[38] Isherwood, R. J., Jozwiak, L. M., Jansen, J. C. et al., 2012. The volcanic history of Olympus Mons from paleo-topography and flexural modeling. Department of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, CO.

DOI: 10.1016/j.epsl.2012.12.020

Google Scholar

[39] Karner, G. D., Watts, A. B., 1983. Gravity anomalies and flexure of the lithosphere at mountain ranges. Journal of Geophysical Research 88 (B12) 10449–10477.

DOI: 10.1029/jb088ib12p10449

Google Scholar

[40] Keiko, N., Messenger, S., Keller, L. P. et al., 2006. Organic globules in the Tagish Lake meteorite: Remnants of the proto-solar disk. Science 314 (5804) 1439–1442

DOI: 10.1126/science.1132175

Google Scholar

[41] Kirkwood, D., 1867. Meteoric astronomy: A treatise on shooting-stars, fireballs, and aerolites. J.B. Lippincott, Philadelphia.

Google Scholar

[42] Kiss, C., Marton, G., Parker, A. et al., 2018. The mass and density of the dwarf planet 2007 OR10. 50th annual meeting of the AAS Division of Planetary Sciences. abstract 311.02. Retrieved 21 September 2018. Retrieved from https://aas.org/meetings/dps50

Google Scholar

[43] Krot, A. N, Amelin, Y., Bland, P. et al., 2009. Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta 73 (17) 4963–4997.

DOI: 10.1016/j.gca.2008.09.039

Google Scholar

[44] Kruijer, T. S., Kleine, T., Fischer-Gödde, M. et al., 2015. Lunar tungsten isotopic evidence for the late veneer. Nature 520 (April 23) 534–537.

DOI: 10.1038/nature14360

Google Scholar

[45] Lacerda, P., Jewitt, D., 2016. Densities of solar system objects from their rotational lightcurves. Astrophysics arXiv:astro-ph/0612237. doi:10.1086/511772.33544r f

Google Scholar

[46] Lakdawalla, E., 2015, November 12. DPA 2015: First reconnaissance of Ceres by Dawn [blog post]. The Planetary Society. Retrieved from http://www.planetary.org/blogs/emily- lakdawalla/2015/dps15-1112-ceres.html

Google Scholar

[47] Lisse, C. M., Wyatt, M. C., Chen. C. H. et al., 2012. Spitzer evidence for a late-heavy bombardment and the formation of ureilites in η Corvi at ~1 gry. The Astrophysical Journal 747 (93) 25.

DOI: 10.1088/0004-637x/747/2/93

Google Scholar

[48] MacKenzie, D., 2003. The big splat or how our moon came to be. John Wiley & Sons, Hoboken, NJ.

DOI: 10.1063/1.1768675

Google Scholar

[49] MacPherson, G. J., Simon, S. B., Davis, A. M. et al., 2005. Calcium-aluminum-rich inclusions: Major unanswered questions. In: A. N. Krot, E. R. D. Scott, and B. Reipurth (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series, vol. 341. Astronomical Society of the Pacific, San Francisco, 225–250.

Google Scholar

[50] Magill, F., 1990. Magill's survey of science: Earth science series. Vol. 2. Salem Press, Hackensack, NJ.b

Google Scholar

[51] Minorplanetcenter.net/iau/lists/Trojans.html

Google Scholar

[52] National Research Council, 2011. The primitive bodies: Building blocks of the solar system. In: cVision and voyages for planetary science in the decade 2013–2022. The National Academies Press, Washington, DC 87–110. doi.org/.

DOI: 10.17226/13117

Google Scholar

[53] O'Leary, M., 2008. Anaxagoras and the origin of panspermia theory. iUniverse , Bloomington, IN.

Google Scholar

[54] Ott, U., 2002. Isotopes of colatiles in pre-solar grains. Space Science Reviews 106 (1–4) 33–48.

DOI: 10.1023/A:1024621200898

Google Scholar

[55] Pirani, S., Johansen,A. and Mustill, A. J., 2019. On the Inclinations of the Jupiter Trojans.

Google Scholar

[56] Astronomy & Astrophysics 631 (2019): A89. Crossref. Web.

Google Scholar

[57] Potemine,I. Y., 2010. Transit of Luyten 726-8 within 1 ly from Epsilon Eridani. Eprint arXiv:1004.1557

Google Scholar

[58] Quitté, G., Halliday, A. N., Meyer, B. S. et al., 2007. Correlated iron 60, nickel 62, and zirconium 96 in refractory inclusions and the origin of the solar system. The Astrophysical Journal 655 (1) 678–684.

DOI: 10.1086/509771

Google Scholar

[59] Rambaux, N., Baguet, D., Chambat, F. et al., 2017. Equilibrium shapes of sarge trans-Neptunian objects. The Astrophysical journal letters, Bristol : IOP Publishing, 850 (1), L9.

DOI: 10.3847/2041-8213/aa95bd

Google Scholar

[60] Rayman, M., 2015. Now appearing at a dwarf planet near you: NASA's Dawn mission to the Asteroid Belt. Silicon Valley Astronomy Lectures. Foothill College, Los Altos, CA.

Google Scholar

[61] Sanctis, M. C. De, Ammannito, E., Raponi, A. et al., 2015. Ammoniated phyllosilicates with a likely outer solar system origin on (1) Ceres. Nature 528 (December 10) 241–244

DOI: 10.1038/nature16172

Google Scholar

[62] Schmidt, L. J., 2004. Sensing remote volcanoes. National Aeronautics and Space Administration. https://earthdata.nasa.gov/user-resources/sensing-our-planet/sensing-remote-volcanoes.

Google Scholar

[63] Schrader, D. L., Fu, R. R., Desch S. J., 2016. Evaluating chondrule formation models and the protoplanetary disk background temperature with low-temperature, sub-silicate solidus chondrule cooling rates, LPI Contribution No. 1903. 47th Lunar and Planetary Science Conference, March 21–25, 2016, The Woodlands, TX, p.1180.

Google Scholar

[64] Stern, S. A., Grundy, W., McKinnon, W. B., et al., 2017. The Pluto system after New Horizons. Annual Reviews of Astronomy ans Astrophysics 2018 arXiv:1712.05669 [astro-ph.EP]

DOI: 10.1146/annurev-astro-081817-051935

Google Scholar

[65] Touboul, M., Puchtel, I. S., Walker, R. J., 2015. Tungsten isotopic evidence for disproportionate late accretion to the Earth and Moon. Nature 520 (April) 530-533.

DOI: 10.1038/nature14355

Google Scholar

[66] Von Humboldt, A., 1850. Cosmos: A sketch of a physical description of the universe. 1. Harper & Brothers, New York, 44.

Google Scholar

[67] Walker, R. J., 2009. Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation. Chemie der Erde 69, 101–125.

DOI: 10.1016/j.chemer.2008.10.001

Google Scholar

[68] Wegener, A., 1912. Die Herausbildung der Grossformen der Erdrinde (Kontinente und Ozeane), auf geophysikalischer Grundlage. In Petermanns Geographische Mitteilungen 50 (1) 185–195, 253–256, 305–309.

Google Scholar

[69] Weijermars, R., 1989. Global tectonics since the breakup of Pangea 180 million years ago: Evolution maps and lithospheric budget. Earth Science Reviews 26 (1–3) 113–162

DOI: 10.1016/0012-8252(89)90020-2

Google Scholar

[70] Weizsäcker, C. F., 1948. The rotation of cosmic gas masses. Zeitschrift für Naturforschung A 3 (8–11) 524–539.

Google Scholar

[71] Wieczorek M.A., 2006. The constitution and structure of the lunar interior. Reviews in Mineralogy and Geochemistry 60 (1) 221–364

DOI: 10.2138/rmg.2006.60.3

Google Scholar

[72] Williams, D. A., Keszthelyi, L. P., Crown, D. A. et al., 2011. Geologic map of Io: U.S. Geological Survey Scientific Investigations Map 3168, 25. Available at https://pubs.usgs.gov/sim/3168/.

DOI: 10.3133/sim3168

Google Scholar

[73] Windley, B. F., 1970. Anorthosites in the early crust of the Earth and on the Moon. Nature 226 (5243) 333–335.

DOI: 10.1038/226333b0

Google Scholar

[74] Wood, J. A., 1963a. Nature 194, 127.

Google Scholar

[75] Wood, J. A., 1963b, unpublished work.

Google Scholar

[76] Yoneda, S., Grossman, L., 1995. Condensation of CaO-MgO-AI203-SiO2 liquids from cosmic gases. Geochimica et Cosmochimica Acta 59 (16) 3413–3444.

DOI: 10.1016/0016-7037(95)00214-k

Google Scholar

[77] Youngl, E. D., Warren, P. H., Rubie, D. C. et al., 2016. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351 (6272) 493–496.

DOI: 10.1126/science.aad0525

Google Scholar