Identification of Bioactive Polyphenolic Compounds and Assessment of Antioxidant Activity of Origanum acutidens

Article Preview

Abstract:

The main objective of the current work is to search the antioxidant activities of Origanum acutidens leaves by using DPPH, FRAP and CUPRAC methods severally. Three well known antioxidant compounds (BHA, BHT and ascorbic acid) were used as standards for comparing the extracts. Also, phenolic compounds of Origanum acutidens leaves were identified by UHPLC-ESI-MS/MS. The high concentrations of rosmarinic acid (11158.99 ppb) quinic acid (3200.84 ppb) and naringenin (1238.45 ppb) were detected quantitatively.

Info:

Pages:

1-8

Citation:

Online since:

November 2017

Export:

* - Corresponding Author

[1] H. Tohma et al., Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS, J. Food Meas. Charact. 11 (2017) 556-566.

DOI: 10.1007/s11694-016-9423-z

Google Scholar

[2] A. Aras, M. Dogru, E. Bursal, Determination of antioxidant potential of Nepeta nuda subsp. lydiae, Anal. Chem. Let. 6(6) (2016) 758-765.

DOI: 10.1080/22297928.2016.1265467

Google Scholar

[3] V. Sicari, Antioxidant potential of extra virgin olive oils extracted from three different varieties cultivated in the Italian province of Reggio Calabria, J. App. Bot. Food Qual. 90 (2017) 76-82.

Google Scholar

[4] H. Duman, K.H.C. Baser, Z. Aytec, Two new species and a new hybrid from Anatolia, Turk. J. Bot. 22 (1998) 51-55.

Google Scholar

[5] J. Baranauskaite et al., Optimization of carvacrol, rosmarinic, oleanolic and ursolic acid extraction from oregano herbs (Origanum onites L., Origanum vulgare spp. hirtum and Origanum vulgare L.), Nat. Prod. Res. 30(6) (2016) 672-674.

DOI: 10.1080/14786419.2015.1038998

Google Scholar

[6] A. Ertas et al., A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid, Ind. Crop. Prod. 67 (2015) 336-345.

DOI: 10.1016/j.indcrop.2015.01.064

Google Scholar

[7] I. Gulcin et al., Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L.), Rec. Nat. Prod. 5(3) (2011) 158-175.

Google Scholar

[8] R. Apak et al., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem. 52 (2004) 7970-7981.

DOI: 10.1021/jf048741x

Google Scholar

[9] M. Isik et al., Determination of antioxidant properties of Gypsophila bitlisensis bark, Int. J. Pharma. 11(4) (2015) 366-371.

DOI: 10.3923/ijp.2015.366.371

Google Scholar

[10] E. Koksal et al., Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by LCMS/MS, Int. J. Food Prop. 20(3) (2017) 514-525.

Google Scholar

[11] N. Kilic Baygutalp et al., Acute effects of training on some biochemical analytes in professional boxers sub-title: Biochemical analytes in boxers, Int. J. Med. Pharmacy. 4(1) (2016) 39-52.

Google Scholar

[12] N. Neffati et al., Phytochemical composition and antioxidant activity of medicinal plants collected from the Tunisian flora, Nat. Prod. Res. 31(13) (2017) 1583-1588.

DOI: 10.1080/14786419.2017.1280490

Google Scholar

[13] A.R. Tapas, D.M. Sakarkar, R.B. Kakde, Flavonoids as nutraceuticals: A review, Trop. J. Pharm. Res. 7 (2008) 1089-1099.

DOI: 10.4314/tjpr.v7i3.14693

Google Scholar

[14] N. Turan et al., Investigation of synthesis, structural characterization, antioxidant activities and thermal properties of Zn(II), Fe(II) and Mn(II) complexes with thiophene-carboxylate ligand, J. Chem. Biochem. 3(2) (2015) 13-29.

DOI: 10.15640/jcb.v3n2a2

Google Scholar

[15] I. Gulcin, Antioxidant properties of resveratrol: A structure-activity insight, Innov. Food Sci. Emerg. 11 (2010) 210-218.

Google Scholar

[16] H. Tohma et al., RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. species, Antioxidants. 5(4) (2016) 38.

DOI: 10.3390/antiox5040038

Google Scholar

[17] J.M. Davis et al., Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance, Am. J. Physiol. Regul. Integr. Comp. Physiol. 296 (2009) 1071-1077.

Google Scholar

[18] E. Bursal, Kinetic properties of peroxidase enzyme from chard (Beta vulgaris subspecies cicla), Int. J. Food Prop. 16(6) (2013) 1293-1303.

DOI: 10.1080/10942912.2011.585729

Google Scholar

[19] C. Manach et al., Bioavailability and bioefficacy of polyphenols in humans. Review of 97 bioavailability studies, Am. J. Clin. Nutr. 81 (2005) 230-242.

Google Scholar

[20] F. Al Juhaimi, K. Ghafoor, Total phenols and antioxidant activities of leaf and stem extracts from coriander, mint and parsley grown in Saudi Arabia, Pak. J. Bot. 43(4) (2011) 2235-2237.

Google Scholar

[21] A. Aras, E. Bursal, M. Doğru, UHPLC-ESI-MS/MS analyses for quantification of phenolic compounds of Nepeta nuda subsp. Lydiae, J. Applied Pharma. Sci. 6(11) (2016) 9-13.

DOI: 10.7324/japs.2016.601102

Google Scholar