Oxidation of α,β-Unsaturated Alcohols by Quinaldinium Fluorochromate

Article Preview

Abstract:

The kinetics of oxidation of α,β-unsaturated alcohols (allyl alcohol, Crotyl alcohol, Cinnamyl alcohol) by quinaldinium fluorochromate has been studied in aqueous acid medium at 313 K. α,β-unsaturated alcohols were converted to the corresponding acrolein, crotonaldehyde and cinnamaldehyde. The reaction is first order each in oxidant, substrate and H+. The decrease in dielectric constant of the medium increases the rate of the reaction. Increase in ionic strength by the addition of sodium perchlorate has no effect on the rate constant. There is no polymerization with acrylonitrile. The reaction has been conducted at four different temperatures and activation parameters were calculated. From the observed kinetic results a suitable mechanism consistent with rate law has been proposed. The relative reactivity order was found to be Cinnamyl alcohol > Crotyl alcohol > Allyl alcohol.

Info:

Pages:

8-19

Citation:

Online since:

December 2012

Export:

[1] J. Muzart, Chem. Rev. 92(1) (1992) 113-140.

Google Scholar

[2] A. Kothari , S. Kothari and K. K. Banerji, Indian. J. Chem. 44A (2005) 2039-2043.

Google Scholar

[3] S. A. Chimatadar, M. S. Salunke, S.T. Nandibewoor, Indian. J. Chem. 45A (2006) 388-393.

Google Scholar

[4] M. Hudlicky, Oxidation inorganic chemistry/reductions in organic chemistry, 1, 2nd Ed., Washington: ACS Monograph, ACS, (1990), 186.

Google Scholar

[5] L. Fieser and M. Fieser, Reagents for organic synthesis, New York, John Wiley and Sons, (1967), 144.

Google Scholar

[6] G. Cainelli and G. Cardillo, Chromium oxidation in organic chemistry, Springer- Verlag, New York, (1984).

Google Scholar

[7] Dandinasivara S. Mahadevappa, Hanumanthanaidu M. K. Naidu, Aust. J. Chem. 28 (1975) 899-901.

Google Scholar

[8] K. Ganapathy, B. Vijayan, Proc. Indian Acad.Sci. 87A (1978) 215-217.

Google Scholar

[9] Iftikhar Ahmad, C. Muhammad asraf, Int. J. Chem. Kinet. 11(8) (1979) 813-819.

Google Scholar

[10] AN. Palaniappan, K.G. Sekar, M. Ravishankar, Oxid. Commun. 18(1) (1995) 52-55.

Google Scholar

[11] S. M. Desai, N. N. Halligudi, S. T. Nandibewoor, Int. J. Chem. Kinet. 31(8) (1999) 583-589.

Google Scholar

[12] S. M. Desai, N. N. Halligudi, S. T. Nandibewoor, Transition metal chemistry 27(2) (2002) 207 – 212.

DOI: 10.1023/a:1013952005346

Google Scholar

[13] S. A. Chimatadar, S. B. Koujalagi, S. T. Nandibewoor, Oxid. Commun. 27(1) (2004) 81-89.

Google Scholar

[14] K. G. Sekar, M. Vellaisamy, Der chemica sinica 3(3) (2012) 703-707.

Google Scholar

[15] Nebahat Degirmenbasi, Beytiye Ozgun, Monatshefte fur Chemie (2004) 407-410.

Google Scholar

[16] B. Bhatacharjee, M. N. Bhatacharjee, M. Bhatacharjee, A. K. Bhatacharjee, Int. J. Chem. Kin. 17 (1985) 629-636.

Google Scholar

[17] J. E. Quinlan, E. S. Amis, J. Am. Chem. Soc. 77 (1955) 4187- 4191.

Google Scholar

[18] E. S. Amis : Solvent effects on reaction rates and mechanism, Academic press, New York, (1966) 42.

Google Scholar

[19] S. Banfi, M. Cavazzini, G. Pozzi, S. V. Barkanova, O. L. Kaliya, J. Chem. Soc. Perkin Trans. 2 (2000) 871-877.

DOI: 10.1039/a905458h

Google Scholar

[20] A. A. Frost, R.G. Pearson, Kinetics and Mechanism, Wiley Eastern NewDelhi,(1970).

Google Scholar

[21] R. C. Petersen, J. Org. Chem. 29 (1964) 3133-3135.

Google Scholar

[22] J. E. Leffler, J. Chem. Phys. 23 (1955) 2199-2205.

Google Scholar

[23] O. Exner, Nature 201 (1964) 488 - 490.

Google Scholar