Phenolic Compounds and Antioxidant Activity of Castanopsis phuthoensis and Castanopsis grandicicatricata

Article Preview

Abstract:

In this study, total phenolic, flavonoid contents, antioxidant capacity, and phenolic compositions of Castanopsis phuthoensis and Castanopsis grandicicatricata (Fagaceae family) were investigated. It was found that bark extracts were rich of phenolic contents, whereas leaf extracts were abundant of flavonoids. The total phenolics varied from 11.20 to 35.47 mg gallic acid equivalent g-1 dry weight (DW), and the total flavonoids were from 2.24 to 12.55 mg rutin equivalent g-1 DW. The results of antioxidant activity showed that the DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical scavenging activity of the free phenolic extracts were higher than the bound phenolic extracts. Regarding the reducing power and β-carotene bleaching assays, the free phenolic extracts showed remarkably strong antioxidant capacity that were similar to the levels of the standard BHT (dibutyl hydroxytoluene) did. It could be concluded that free phenolic extracts were more effective in antioxidant activities than bound phenolic extracts. A highly significant correlation between phenolic contents and antioxidant activity in extracts were observed. By HPLC analysis, seven phenolic acids were detected including gallic, p-hydroxybenzoic, vanillic, sinapic, p-coumaric, ellagic, and vanillin. Of which, gallic, ellagic, and sinapic acids were the most abundant compounds in the two species. The results suggest C. phuthoensis and C. grandicicatricata contain rich sources of natural antioxidants and phenolic compounds which are probably considered in pharmaceutical use.

Info:

Pages:

77-87

Citation:

Online since:

June 2016

Export:

* - Corresponding Author

[1] A.A. Soares, C.G.M. de Souza, F.M. Daniel, G.P. Ferrari, S.M.G. da Costa, R.M Peralta, Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity, Food Chem. 112(4) (2009) 775-781.

DOI: 10.1016/j.foodchem.2008.05.117

Google Scholar

[2] G. Sakthidevi, V.R. Mohan, Total phenolic, flavonoid contents and in vitro antioxidant activity of Dioscorea alatal. tuber, J. Pharm. Sci. & Res., 5(5) (2013) 115-119.

Google Scholar

[3] S.A.O. Santos, P.C.R.O. Pinto, A.J.D. Silvestre, C.P. Neto, Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L, Ind. Crops Prod. 31 (2010) 521–526.

DOI: 10.1016/j.indcrop.2010.02.001

Google Scholar

[4] N. Dolai, I. Karmakar, R.B.S. Kumar, B. Kar, A. Bala, P.K. Haldar, Free radical scavenging activity of Castanopsis indica in mediating hepatoprotective activity of carbon tetrachloride intoxicated rats, Asian Pac. J. Trop. Biomed. (2012) S242-S251.

DOI: 10.1016/s2221-1691(12)60168-3

Google Scholar

[5] L. Custódio, J. Patarraa, F. Alberício, N.daR. Neng, J.M.F. Nogueira, A. Romanoa, Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer's disease, Ind. Crops Prod. 64 (2015) 45–51.

DOI: 10.1016/j.indcrop.2014.11.001

Google Scholar

[6] L. Sepúlveda, A. Ascacio, R. Rodríguez-Herrera, A. Aguilera-Carbó, C.N. Aguilar, Ellagic acid: Biological properties and biotechnological development for production processes, Afr. J. Biotechnol. 10(22) (2011) 4518–4523.

Google Scholar

[7] S.B. Nimse, D.K. Pal, Free radicals, natural antioxidants, and their reaction mechanisms, RSC Advances, 5 (2015) 27986-28006.

DOI: 10.1039/c4ra13315c

Google Scholar

[8] R. Xing, H. Yu, S. Liu, W. Zhang, Q. Zhang, Z. Lia, P. Lia, Antioxidant activity of differently regioselective chitosan sulfates in vitro, Bioorg. Med. Chem. 13(4) (2005) 1387–1392.

DOI: 10.1016/j.bmc.2004.11.002

Google Scholar

[9] A.A. Elzaawely, S. Tawata, Antioxidant capacity and phenolic content of Rumex dentatus L. grown in Egypt, J. Crop Sci. Biotech. 15(1) (2012) 59-64.

DOI: 10.1007/s12892-011-0063-x

Google Scholar

[10] N. Biswas, P. Balac, S.K. Narlakanti, M.D.E. Haque, M.D.M. Hassan, Identification of phenolic compounds in processed cranberries by HPLC method, J. Nutr. Food Sci. 3(1) (2013).

DOI: 10.4172/2155-9600.1000181

Google Scholar

[11] M. Mikulic-Petkovsek, J. Samoticha, K. Eler, F. Stampar, R. Veberic, Traditional Elderflower Beverages: A rich source of phenolic compounds with high antioxidant activity, J. Agric. Food Chem. 63(5) (2015) 1477−1487.

DOI: 10.1021/jf506005b

Google Scholar

[12] R. Singh, N. Kumari, Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorrossi Gaertn.–Avaluable medicinal tree, Ind. Crops Prod, 73 (2015) 1–8.

DOI: 10.1016/j.indcrop.2015.04.012

Google Scholar

[13] L. Wen, X. Guo, R.H. Liu, L. You, A.M. Abbasi, X. Fu, Phenolic contents and cellular antioxidant activity of Chinese hawthorn Crataegus pinnatifida, Food Chem. 186 (2015) 54–62.

DOI: 10.1016/j.foodchem.2015.03.017

Google Scholar

[14] Y. Xie, Y. Zheng, X. Dai, Q. Wang, J. Cao, J. Xiao, Seasonal dynamics of total flavonoid contents and antioxidant activity of Dryopteri serythrosora, Food Chem. 186 (2015) 113–118.

DOI: 10.1016/j.foodchem.2014.05.024

Google Scholar

[15] J.C.M. Barreira, I.C.F.R. Ferreira, M.B.P.P. Oliveira, J.A. Pereira, Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit, Food Chem. 107(3) (2008) 1106–1113.

DOI: 10.1016/j.foodchem.2007.09.030

Google Scholar

[16] Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic, J. Food Drug Anal. 22, (2014) 296 – 302

DOI: 10.1016/j.jfda.2013.11.001

Google Scholar

[17] C.D. Stalikas, Extraction, separation, and detection methods for phenolic acids and flavonoids, J. Sep. Sci. 30(18) (2007) 3268–3295.

DOI: 10.1002/jssc.200700261

Google Scholar

[18] E. Oskoueian, N. Abdullah, S. Ahmad, W. Z. Saad, Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract, Int. J. Mol. Sci., 12 (2011) 5955-5970;

DOI: 10.3390/ijms12095955

Google Scholar

[19] D.H. Vuong, N.H. Xia, Two new species in Castanopsis (Fagaceae) from Vietnam and their leaf cuticular features, Phytotaxa. 186(1) (2014) 029–041.

DOI: 10.11646/phytotaxa.186.1.2

Google Scholar

[20] H.H. Pham, An illustrated Flora of Vietnam II, Youth publishing house, Ho Chi Minh, 2003, p.612 (in Vietnamese).

Google Scholar

[21] T.D. Xuan, E. Tsuzuki, H. Terao, M. Matsuo, T.D Khanh, Correlation between growth inhibitory exhibition and suspected allelochemicals (Phenolic compounds) in the extract of Alfalfa (Medicago sativa L.), Plant Prod. Sci. 6(3) (2003) 165–171.

DOI: 10.1626/pps.6.165

Google Scholar

[22] H. Ti, R. Zhang, M. Zhang, Q.Li, Z. Wei, Y. Zhang, X. Tang, Y. Deng, L. Liu, Y. Ma, Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages, Food Chem. 161 (2014) 337–344.

DOI: 10.1016/j.foodchem.2014.04.024

Google Scholar

[23] A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97(4) (2006) 654–660.

DOI: 10.1016/j.foodchem.2005.04.028

Google Scholar

[24] A.A. Elzaawely, T.D. Xuan, S. Tawata, Antioxidant and antibacterial activities of Rumex japonicas Houtt, Biol. Pharm. Bull. 28(12) (2005) 2225-2230.

DOI: 10.1248/bpb.28.2225

Google Scholar

[25] E. Bursal, E. Köksal, Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.), Food Res. Int. 44(7) (2011) 2217–2221.

DOI: 10.1016/j.foodres.2010.11.001

Google Scholar

[26] N. Saeed, M.R. Khan, M.R., Shabbir, M, Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L, Bio. Med. Central. 12 (2012) 221. http://www.biomedcentral.com/1472-6882/12/221.

DOI: 10.1186/1472-6882-12-221

Google Scholar

[27] T.M. Elattar, A.S. Virji, The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro, Anticancer Res. 20 (2000) 1733–1738.

Google Scholar

[28] J.A. Sánchez-Burgos, M.V. Ramirez-Maresb, M.M. Larrosac, J.A. Gallegos-Infantea, R.F. Gonzalez-Laredoa, L. Medina-Torresd, N.E. Rocha-Guzmana, Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect ofherbal infusions from four Quercus species, Ind. Crops Prod., 42 (2013) 57– 62.

DOI: 10.1016/j.indcrop.2012.05.017

Google Scholar

[29] S.A.O. Santos, J.J. Villaverde, A.F. Sousa, J.F.J. Coelho, C.P. Neto, A.J.D. Silvestre, Phenolic composition and antioxidant activity of industrial cork by-products, Ind. Crops Prod. 47 (2013) 262-269.

DOI: 10.1016/j.indcrop.2013.03.015

Google Scholar

[30] J. Zhishen, T. Mengcheng, W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem. 64(4) (1999) 555–559.

DOI: 10.1016/S0308-8146(98)00102-2

Google Scholar

[31] R. Touati, S.A.O. Santos, S.M. Rochac, K. Belhamel, A.J.D. Silvestre, The potential of cork from Quercus suber L. grown in Algeria as a source of bioactive lipophilic and phenolic compounds, Ind. Crops Prod. 76 (2015) 936–945.

DOI: 10.1016/j.indcrop.2015.07.074

Google Scholar

[32] D.T. Khang, T.N. Dung, A.A. Elzaawely, T.D. Xuan, Phenolic profiles and antioxidant activity of germinated legumes, Foods 5 (2016) 27

DOI: 10.3390/foods5020027

Google Scholar

[33] F. Medini, H. Fellah, R. Ksouri, C. Abdelly, Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum, Journal of Taibah University for Science, 8(3) (2014) 216–224.

DOI: 10.1016/j.jtusci.2014.01.003

Google Scholar