open access

Vol 75, No 2 (2024)
Original paper
Submitted: 2024-01-02
Accepted: 2024-02-28
Published online: 2024-04-22
Get Citation

Clinical predictive value of control attenuation parameters in combination with miR-192-5p in patients with acute pancreatitis in nonalcoholic fatty liver disease

Yang Hu1, Liang Zhu1, Ronglai Cao1
·
Pubmed: 38646989
·
Endokrynol Pol 2024;75(2):207-215.
Affiliations
  1. Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China

open access

Vol 75, No 2 (2024)
Original Paper
Submitted: 2024-01-02
Accepted: 2024-02-28
Published online: 2024-04-22

Abstract

Introduction: Control attenuation parameters (CAP) can detect nonalcoholic fatty liver disease (NAFLD). Our previous study found that miR-192-5p could screen for acute pancreatitis (AP) in NAFLD patients. This study focused on the role of CAP and miR-192-5p in NAFLD of acute AP.

Material and methods: AP patients and controls were enrolled. Classification of AP patients into NAFLD/AP patients and non-NAFLD/AP was made based on the CAP value. CAP was measured by liver transient elastography. Serum miR-192-5p was measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Logistic regression analysis was conducted to examine the risk factors for the development of NAFLD. Receiver operating characteristic (ROC) was assessed for the predictive value of AP severity.

Results: NAFLD was more common in the AP group than in the controls (35.00% vs. 8.75%). The CAP value was higher in AP patients with NAFLD than in non-NAFLD, whereas miR-192-5p was significantly lower in AP patients with NAFLD. Additionally, AP patients with NALFD are more likely to experience respiratory failure, systemic inflammatory response syndrome (SIRS), and pancreatic necrosis with longer hospitalisation and exacerbate the incidence of moderate to severe AP. Both miR-192-5p and TG are potential risk factors for the development of NAFLD in patients with AP. Furthermore, the CAP value gradually increased with increasing AP severity, while miR-192-5p gradually decreased. Finally, the sensitivity and specificity of CAP combined with miR-192-5p for the prediction of moderate to severe AP were scored as 82.61% and 82.43%, respectively.

Conclusions: NAFLD exacerbated the progression of AP, and CAP combined with miR-192-5p could predict the severity of AP. Our study may provide more reference for AP disease progression and treatment.

Abstract

Introduction: Control attenuation parameters (CAP) can detect nonalcoholic fatty liver disease (NAFLD). Our previous study found that miR-192-5p could screen for acute pancreatitis (AP) in NAFLD patients. This study focused on the role of CAP and miR-192-5p in NAFLD of acute AP.

Material and methods: AP patients and controls were enrolled. Classification of AP patients into NAFLD/AP patients and non-NAFLD/AP was made based on the CAP value. CAP was measured by liver transient elastography. Serum miR-192-5p was measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Logistic regression analysis was conducted to examine the risk factors for the development of NAFLD. Receiver operating characteristic (ROC) was assessed for the predictive value of AP severity.

Results: NAFLD was more common in the AP group than in the controls (35.00% vs. 8.75%). The CAP value was higher in AP patients with NAFLD than in non-NAFLD, whereas miR-192-5p was significantly lower in AP patients with NAFLD. Additionally, AP patients with NALFD are more likely to experience respiratory failure, systemic inflammatory response syndrome (SIRS), and pancreatic necrosis with longer hospitalisation and exacerbate the incidence of moderate to severe AP. Both miR-192-5p and TG are potential risk factors for the development of NAFLD in patients with AP. Furthermore, the CAP value gradually increased with increasing AP severity, while miR-192-5p gradually decreased. Finally, the sensitivity and specificity of CAP combined with miR-192-5p for the prediction of moderate to severe AP were scored as 82.61% and 82.43%, respectively.

Conclusions: NAFLD exacerbated the progression of AP, and CAP combined with miR-192-5p could predict the severity of AP. Our study may provide more reference for AP disease progression and treatment.

Get Citation

Keywords

CAP; miR-192-5p; AP; NAFLD

About this article
Title

Clinical predictive value of control attenuation parameters in combination with miR-192-5p in patients with acute pancreatitis in nonalcoholic fatty liver disease

Journal

Endokrynologia Polska

Issue

Vol 75, No 2 (2024)

Article type

Original paper

Pages

207-215

Published online

2024-04-22

Page views

131

Article views/downloads

65

DOI

10.5603/ep.98765

Pubmed

38646989

Bibliographic record

Endokrynol Pol 2024;75(2):207-215.

Keywords

CAP
miR-192-5p
AP
NAFLD

Authors

Yang Hu
Liang Zhu
Ronglai Cao

References (29)
  1. Dancu GM, Popescu A, Sirli R, et al. The BISAP score, NLR, CRP, or BUN: Which marker best predicts the outcome of acute pancreatitis? Medicine (Baltimore). 2021; 100(51): e28121.
  2. Zhao Y, Wei J, Xiao Bo, et al. Early prediction of acute pancreatitis severity based on changes in pancreatic and peripancreatic computed tomography radiomics nomogram. Quant Imaging Med Surg. 2023; 13(3): 1927–1936.
  3. Regnér S, Önnerhag K, Sternby H. Fatty liver disease and pancreatic inflammation-A lethal combination? United European Gastroenterol J. 2023; 11(5): 405–406.
  4. Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020; 73(1): 202–209.
  5. Bhatt DL, Bays HE, Miller M, et al. ENTRIGUE Principal Investigators, ENTRIGUE Principal Investigators. The FGF21 analog pegozafermin in severe hypertriglyceridemia: a randomized phase 2 trial. Nat Med. 2023; 29(7): 1782–1792.
  6. Wang H, Sun R, Yang S, et al. Association between serum ferritin level and the various stages of non-alcoholic fatty liver disease: A systematic review. Front Med (Lausanne). 2022; 9: 934989.
  7. Atefi M, Entezari MH, Vahedi H, et al. Sesame Oil Ameliorates Alanine Aminotransferase, Aspartate Aminotransferase, and Fatty Liver Grade in Women with Nonalcoholic Fatty Liver Disease Undergoing Low-Calorie Diet: A Randomized Double-Blind Controlled Trial. Int J Clin Pract. 2022; 2022: 4982080.
  8. Lee S, Kim KW, Kim SoY, et al. Controlled attenuation parameter measured using transient elastography for the noninvasive assessment of macrovesicular steatosis in potential living liver donors. Ultrasonography. 2022; 41(1): 164–170.
  9. Su X, Kong F, Zhang Q, et al. Comprehensive expression analysis reveals several miRNAs against acute pancreatitis via modulating autophagy. Cell Mol Biol (Noisy-le-grand). 2023; 69(3): 129–134.
  10. Luo B, Wang C, Wang Z, et al. Evaluation of Serum miR-216a, miR-216b, miR-217, miR-92b, miR-375 and miR-148a as Potential Biomarkers for Acute Pancreatitis and the Role of miR-92b in Attenuating Caerulein-induced Injury and Inflammatory Responses in AR42J Cells. Comb Chem High Throughput Screen. 2023; 26(12): 2184–2193.
  11. Liu XL, Cao HX, Wang BC, et al. miR-192-5p regulates lipid synthesis in non-alcoholic fatty liver disease through SCD-1. World J Gastroenterol. 2017; 23(46): 8140–8151.
  12. Wang X, Cai H, Chen Z, et al. Baicalein alleviates pyroptosis and inflammation in hyperlipidemic pancreatitis by inhibiting NLRP3/Caspase-1 pathway through the miR-192-5p/TXNIP axis. Int Immunopharmacol. 2021; 101(Pt B): 108315.
  13. Hu Y, Yu Y. Dysregulation of miR-192-5p in acute pancreatitis patients with nonalcoholic fatty liver and its functional role in acute pancreatitis progression. Biosci Rep. 2020; 40(5).
  14. Banks PA, Bollen TL, Dervenis C, et al. Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013; 62(1): 102–111.
  15. Emamat H, Ghalandari H, Totmaj AS, et al. Calcium to magnesium intake ratio and non-alcoholic fatty liver disease development: a case-control study. BMC Endocr Disord. 2021; 21(1): 51.
  16. Ordoñez-Vázquez AL, Juárez-Hernández E, Zuarth-Vázquez JM, et al. Impact on Prevalence of the Application of NAFLD/MAFLD Criteria in Overweight and Normal Weight Patients. Int J Environ Res Public Health. 2022; 19(19).
  17. Siddiqui MS, Carbone S, Vincent R, et al. Prevalence and Severity of Nonalcoholic Fatty Liver Disease Among Caregivers of Patients With Nonalcoholic Fatty Liver Disease Cirrhosis. Clin Gastroenterol Hepatol. 2019; 17(10): 2132–2133.
  18. Xie Y, Kong W, Wang X, et al. Association of glycated hemoglobin with non-alcoholic fatty liver disease patients and the severity of liver steatosis and fibrosis measured by transient elastography in adults without diabetes. BMC Endocr Disord. 2022; 22(1): 220.
  19. Yari Z, Cheraghpour M, Aghamohammadi V, et al. Energy-dense nutrient-poor snacks and risk of non-alcoholic fattyliver disease: a case-control study in Iran. BMC Res Notes. 2020; 13(1): 221.
  20. Xu C, Qiao Z, Lu Y, et al. Influence of Fatty Liver on the Severity and Clinical Outcome in Acute Pancreatitis. PLoS One. 2015; 10(11): e0142278.
  21. Jia X, Zhang X, Sun D, et al. Triglyceride to HDL-C ratio is associated with plasma D-dimer levels in different types of pancreatitis. Sci Rep. 2022; 12(1): 12952.
  22. Li Q, Dhyani M, Grajo JR, et al. Current status of imaging in nonalcoholic fatty liver disease. World J Hepatol. 2018; 10(8): 530–542.
  23. Wong VWS, Chan WK, Chitturi S, et al. Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017-Part 1: Definition, risk factors and assessment. J Gastroenterol Hepatol. 2018; 33(1): 70–85.
  24. Wu D, Zhang M, Xu S, et al. Nonalcoholic Fatty Liver Disease Aggravated the Severity of Acute Pancreatitis in Patients. Biomed Res Int. 2019; 2019: 9583790.
  25. Abulimiti A, Husaiyin A, Sailai Y. Evaluation of HVHF for the treatment of severe acute pancreatitis accompanying MODS. Medicine (Baltimore). 2018; 97(1): e9417.
  26. Liu XL, Pan Q, Cao HX, et al. Lipotoxic Hepatocyte-Derived Exosomal MicroRNA 192-5p Activates Macrophages Through Rictor/Akt/Forkhead Box Transcription Factor O1 Signaling in Nonalcoholic Fatty Liver Disease. Hepatology. 2020; 72(2): 454–469.
  27. Tan Y, Ge G, Pan T, et al. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One. 2014; 9(8): e105192.
  28. Yang L, Liu J, Xing Y, et al. Comparison of BISAP, Ranson, MCTSI, and APACHE II in Predicting Severity and Prognoses of Hyperlipidemic Acute Pancreatitis in Chinese Patients. Gastroenterol Res Pract. 2016; 2016: 1834256.
  29. Garcia SC, Toolis M, Ubels M, et al. Comparison of clinical characteristics and outcomes between alcohol-induced and gallstone-induced acute pancreatitis: An Australian retrospective observational study. SAGE Open Med. 2021; 9: 20503121211030837.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą jest  VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl