Molecular Identification of Rhizobium Isolates and The Effect of Nanoparticles on Growth and Differentiation

Authors

  • Hanya Khalid Al-Hayani Department of Life Sciences, College of Education for Pure Sciences, University of Mosul, Mosul, IRAQ.
  • Omar Abdulazeez Alhamd Department of Life Sciences, College of Education for Pure Sciences, University of Mosul, Mosul, IRAQ.

DOI:

https://doi.org/10.55544/jrasb.2.2.20

Keywords:

Rhizobia, isolation and identification, silver nanoparticles, TiO2NPs, NiONPs

Abstract

In this study, five isolates of Rhizobium bacteria were isolated from several different agricultural regions of Nineveh Governorate. The five isolates showed their ability to dilute gelatin, as well as a positive result of the growth test on a triglyceride medium and iron showed their ability to produce catalase and urease enzyme, and the results of the molecular diagnosis showed The isolates are identical and in varying proportions to the standard isolates recorded in the GenBank, and the biological activity of silver nanoparticles showed a clear antagonistic effect on the growth of rhizobium bacteria, where the first concentration (250) was the least effect, while the third concentration (750) had the highest effect ratio.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Omar Abdulazeez Alhamd, Department of Life Sciences, College of Education for Pure Sciences, University of Mosul, Mosul, IRAQ.

 

 

References

Alaqad, K. and Saleh, T. A. (2016). Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs, Journal of Environ Anal Toxico, l6 (384): 2161- 0525.

Andrews,M. and Andrews, M.E.(2017) Specificity in Legume-Rhizobia Symbioses.Int.J.Mol.Sci.,18(705):1-39.

Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. (2012). Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomedicine;7:6003-9. doi: 10.2147/ijn.s35347.

Baginsky, C.; Brito, B.; Scherson, R.; pertuze, R.; Seguel, O.; Canete, A.;Critsian,A.; Johnson,E.W. (2014). Genetic diversity of Rhizobium from nodulating beans grown in a variety of Mediterranean climate soils of Chile. Arch.Microbiol. 197:419-429.

Bhattacharjee, M., & Banerjee, M. (2018). Isolation, Characterization and Medium Optimization of Rhizobium Symbiont (S) From Sesbania aculeata (Dhaincha). International Journal of Agriculture, Environment and Biotechnology, 11(6), 851-861.

Burke, D. J., Pietrasiak, N., Situ, S. F., Abenojar, E. C., Porche, M., Kraj, P., et al. (2015). Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int. J. Mol. Sci. 16, 23630–23650. doi: 10.3390/ijms161023630.

Cappuccino, J.G. and Sherman, N. (2014) Microbiology a laboratory manual tenth edition. Preson education, Inc.P.153-205.

Chhetri, T.k.; Subedee, B.R. and Pant ,B.(2019).Isolation Identification and Production of Encapsulatted Bradyrhizoium japonicum and Study on their Viability.Nep. J. Biotechnol., 7:39-49.

Fan, R., Huang, Y. C., Grusak, M. A., Huang, C. P., & Sherrier, D. J. (2014). Effects of nano-TiO2 on the agronomically-relevant Rhizobium–legume symbiosis. Science of the Total Environment, 466, 503-512.

Feizi H, Rezvani Moghaddam P, Shahtahmassebi N, Fotovat A.(2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res;146:101–6.

Feng, Y. Z., Cui, X. C., He, S. Y., Dong, G., Chen, M., Wang, J. H., et al. (2013). The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ. Sci. Technol. 47, 9496–9504. doi: 10.1021/es402109n.

Fenoglio I, Greco G, Livraghi S, Fubini B. (2009).Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chem Eur J;15:4614–21.

Graham, P.H.(2008). Ecology of the root nodule bacteria of legumes. In: Dilworthe. M.J.J., James.S.K., Sprent J. I., Newton, W. E. (eds.) NitrogenFixing leguminous symbioses. Springer. Dardrecht. The Netherlands,.23- 43.

Gu, W. and Milton, R. D.(2020). Natural and engineered electron transfer of nitrogenase. Chem., 2(2): 322–346.

Jin T, Sun D, Su JY, Zhang H, Sue HJ. (2009). Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci.;74(1):M46-52. doi:10.1111/j.1750- 3841.2008.01013.x.

Khaled Saif Aldina, Sahar Al-Hariria and Adnan Ali-Nizamb, (2020). "Effectiveness of ZnO Nanoparticles against the Foodborne Microbial Pathogens E. coli and S. aureus" Jordan Journal of Chemistry, Volume 15, Number 2, Pages 87-94

Kim JS, Kuk E, Yu KN, et al.(2007) Antimicrobial effects of silver nanoparticles. Nanomedicine.;3(1):95-101. doi:10.1016/j.nano.2006.12.001.

Lakzian, A.; Murphy, P.; Turner, A.; Beynon, J.L.; Giller, K. Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: Abundance, plasmid profiles, diversity and metal tolerance. Soil. Biol. Biochem. 2002, 34, 519–529. [CrossRef].

Luzala, M. M., Muanga, C. K., Kyana, J., Safari, J. B., Zola, E. N., Mbusa, G. V.,... & Memvanga, P. B. (2022). A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. Nanomaterials, 12(11), 1841.

Macfaddin J.F.(2000) Biochemical test for identification of medical bacteria 3rd ed the Williams and Wilkins. Baltimare: USA

Madkour, L. H. (2019). Nanoelectronic Materials. Advanced Structured Materials.116:7.

Mazur, A., G. Stasiak, J. Wielbo, A. Kubik-Komar, M. Marek-Kozaczuk, and A. Skorupska, (2011) Intragenomic diversity of Rhizobium leguminosarum bv. trifolii clover nodule isolates. BMC Microbiology,. 11(1): p. 123.

Mohaddam, M. N., Sabzevar, A. H., & Mortazaei, Z. (2017). Impact of ZnO and silver nanoparticles on legume-sinorhizobium symbiosis. Adv. Stud. Biol, 9, 83-90.

Oldroyd, G. E., Murray, J. D., Poole, P. S., & Downie, J. A. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annual review of genetics, 45, 119-144.

Paul J. Boersma, The University of Western Ontario, The Effects of Silv acts of Silver Nanopar er Nanoparticles on So ticles on Soybean (Gly ybean (Glycine max) cine max) Growth and Nodulation, Supervisor: Macfie, Sheila M., The University of Western Ontario A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in Biology © Paul J. Boersma 2021

Pérez Carrascal, O.M., D. VanInsberghe, S. Juárez, M.F. Polz, P. Vinuesa, and V. González, (2016). Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris. Environmental Microbiology, 18(8): p. 2660-2676.

Rahman, M.T.; Uddin, M.S.; Sultana, R.; Moue, A. and Setu, M. (2013). Polymerase chain reaction (PCR): A short review. Anwer Khan Modern Med. College J., 4(1):30-36.

Roy.S.; Liu, W.; Nandety, R.S.; Crook, A.; Mysore, K.S.; Pislariu, C.I.; Frugoli, J.; Dickstein, R. and Udvardi, M.K. (2020) Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation.The Plant Cell,32:15-41.

Saitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425.

Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M.,... & Mohamad, D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters, 7(3), 219-242.

Tariq, H; Z, Ahmed, Ma, Awan; A, Samad and S, Muhammad. (2017). Isolation, Identification and Antibiogram of Pseudomonas aeruginosa From Nosocomial Wound Infection In Quetta District. International Journal Of Biology, Pharmacy And Allied Sciences Ijbpas, Ijbpas, June, 6(6), Pp: 1220-1235.

Tamura K., Nei M., and Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101:11030-11035.

Tille, P.M. (2017). Baily and Scott’s Diagnostic Microbiology. 41thed. Elsevier, Inc. China. 1115pp.

Unger, L.; Ziegler, S.F.; Huffman, G.A.; Knauf, V.C.; Peet, R.; Moore, L.W.; Gordon, M.P. and Nester, E.W. (1985) New class of limited-host-range Agrobacterium mega-tumor-inducing plasmids lacking homology to the transferred DNA of a widehost-range, tumor-inducing plasmid. J. Bacteriol.,164(2):723- 730.

Vedam, V., Haynes, J. G., Kannenberg, E. L., Carlson, R. W., & Sherrier, D. J. (2004). A Rhizobium leguminosarum lipopolysaccharide lipid-A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation. Molecular plant-microbe interactions, 17(3), 283-291.

Vincent, J. M. (1970). A Manual for the Practical Study of the RootNodule Bacteria. I. B. P. Handbook No. Blackwell Scientific Publication Ltd., Oxford. U.K.

Yang, J.; Xie.; Tian, Z.; Dixon, R. and W. Y. (2018). Polyprotein strategy for stoichiometric assembly of nitrogen fixation components roar synthetic biology. pans., 115(36): 8509-5817.

Downloads

Published

2023-05-02

How to Cite

al-Hayani, H. K., & Alhamd , O. A. (2023). Molecular Identification of Rhizobium Isolates and The Effect of Nanoparticles on Growth and Differentiation. Journal for Research in Applied Sciences and Biotechnology, 2(2), 136–146. https://doi.org/10.55544/jrasb.2.2.20

Issue

Section

Articles