GENETIC VARIATION AND HERITABILITY ESTIMATES IN CHICKPEA SEEDLING TRAITS: IMPLICATIONS FOR BREEDING PROGRAMS

Authors

  • MU RASHEED Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • A MALIK Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • MS ALI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan

DOI:

https://doi.org/10.54112/bbasr.v2024i1.59

Keywords:

Chickpea, root length, heritability, genetic advance, breeding program

Abstract

Chickpea, also known as Bengal gram, Channa, or garbanzo bean, is a vital pulse crop that offers wholesome food to the growing population. Originating from modern-day southeast Turkey and Syria, chickpea germplasm is abundant in Ethiopia, serving as a secondary centre of genetic diversity for various dietary legumes. Two main varieties are desi and Kabuli. A study at the University of Punjab Lahore found significant genetic variations in chickpea seedlings, with high genetic components and a broad-sense heritability of 87.04%. Root length showed a significant genotypic effect, with a PCV of 16.39% and a larger GCV than SL. The root-to-seedling length ratio showed a significant genotypic variance, with a heritability estimate of 69.98% and a genetic advance of 5.740%. Seedling biomass did not show significant genotypic variation. Leaf characteristics showed substantial genotypic differences, indicating extensive genetic heterogeneity. The correlation matrix showed substantial correlations between seven qualities in chickpea seedlings, suggesting genetic and physiological links between the qualities. These findings can inform breeding efforts, improve breeding programs, and generate new varieties with improved features.

References

Ahmad, M., Ali, Q., Hafeez, M. M., and Malik, A. (2021). Improvement for biotic and abiotic stress tolerance in crop plants. Biological and Clinical Sciences Research Journal 2021. https://doi.org/10.54112/bcsrj.v2021i1.50 DOI: https://doi.org/10.54112/bcsrj.v2021i1.50

Ali, F., Ahsan, M., Ali, Q., and Kanwal, N. (2017). Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Frontiers in plant science 8, 1397. https://doi.org/10.3389/fpls.2017.01397 DOI: https://doi.org/10.3389/fpls.2017.01397

Ali, F., Kanwal, N., Ahsan, M., Ali, Q., Bibi, I., and Niazi, N. K. (2015). Multivariate analysis of grain yield and its attributing traits in different maize hybrids grown under heat and drought stress. Scientifica 2015. https://doi.org/10.1155/2015/563869 DOI: https://doi.org/10.1155/2015/563869

Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N. H., Munzoor, M., Mustafa, H. S. B., and Muhammad, S. (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life sciences 1.

Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., and Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. Advancements in Life Sciences 3, 51-58.

Ali, Q., Ali, A., Ahsan, M., Nasir, I. A., Abbas, H. G., and Ashraf, M. A. (2014). Line× Tester analysis for morpho-physiological traits of Zea mays L seedlings. Advancements in Life sciences 1, 242-253.

Ali, Q., and Malik, A. (2021). Genetic response of growth phases for abiotic environmental stress tolerance in cereal crop plants. Genetika 53, 419-456. DOI:10.2298/GENSR2101419A DOI: https://doi.org/10.2298/GENSR2101419A

Arshad, M., Bakhsh, A., Bashir, M., and Haqqani, A. (2002). Determining the heritability and relationship between yield and yieldcomponents in chickpea (Cicer arietinum L.). Pakistan Journal of Botany (Pakistan).34: 237-245.

Asif, S., Ali, Q., and Malik, A. (2020). EVALUATION OF SALT AND HEAVY METAL STRESS FOR SEEDLING TRAITS IN WHEAT. Biological and Clinical Sciences Research Journal 2020. https://doi.org/10.54112/bcsrj.v2020i1.5 DOI: https://doi.org/10.54112/bcsrj.v2020i1.5

Balqees, N., Ali, Q., and Malik, A. (2020). Genetic evaluation for seedling traits of maize and wheat under biogas wastewater, sewage water and drought stress conditions. Biological and Clinical Sciences Research Journal 2020. https://doi.org/10.54112/bcsrj.v2020i1.38 DOI: https://doi.org/10.54112/bcsrj.v2020i1.38

Flowers, T. J., Gaur, P. M., Gowda, C. L., Krishnamurthy, L., Samineni, S., Siddique, K. H., Turner, N. C., Vadez, V., Varshney, R. K., and Colmer, T. D. (2010). Salt sensitivity in chickpea. Plant, cell & environment 33, 490-509. doi: 10.1111/j.1365-3040.2009.02051.x DOI: https://doi.org/10.1111/j.1365-3040.2009.02051.x

Ghafoor, M. F., Ali, Q., and Malik, A. (2020). Effects of salicylic acid priming for salt stress tolerance in wheat. Biological and Clinical Sciences Research Journal 2020. https://doi.org/10.54112/bcsrj.v2020i1.24 DOI: https://doi.org/10.54112/bcsrj.v2020i1.24

Hagedorn, D. J. (1984). Compendium of pea diseases. (Disease Compendia Series). ISBN-13 ‏ : ‎ 978-0890540602

Hendrix, S. D., Nielsen, E., Nielsen, T., and Schutt, M. (1991). Are seedlings from small seeds always inferior to seedlings from large seeds? Effects of seed biomass on seedling growth in Pastinaca sativa L. New Phytologist 119, 299-305. doi: 10.1111/j.1469-8137.1991.tb01034.x. DOI: https://doi.org/10.1111/j.1469-8137.1991.tb01034.x

Huisman, J., and Van der Poel, A. (1994). Aspects of the nutritional quality and use of cool season food legumes in animal feed. In "Expanding the Production and Use of Cool Season Food Legumes: A global perspective of peristent constraints and of opportunities and strategies for further increasing the productivity and use of pea, lentil, faba bean, chickpea and grasspea in different farming systems", pp. 53-76. Springer. DOI: https://doi.org/10.1007/978-94-011-0798-3_2

Iqbal, S., Ali, Q., and Malik, A. (2021). Effects of seed priming with salicylic acid on zea mays seedlings grown under salt stress conditions. Biological and Clinical Sciences Research Journal 2021. https://doi.org/10.54112/bcsrj.v2021i1.65 DOI: https://doi.org/10.54112/bcsrj.v2021i1.65

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., and Mailk, A. (2020a). Evaluation for Na+/K+ ratio under salt stress condition in wheat. Life Sci J 17, 43-47.

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., and Malik, A. (2020b). Evaluation of genetic variability for salt tolerance in wheat. Biological and Clinical Sciences Research Journal 2020. https://doi.org/10.54112/bcsrj.v2020i1.16 DOI: https://doi.org/10.54112/bcsrj.v2020i1.16

Jukanti, A. K., Gaur, P. M., Gowda, C., and Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition 108, S11-S26. doi: 10.1017/S0007114512000797. DOI: https://doi.org/10.1017/S0007114512000797

Keneni, G., Bekele, E., Imtiaz, M., Dagne, K., Getu, E., and Assefa, F. (2012). Genetic diversity and population structure of Ethiopian chickpea (Cicer arietinum L.) germplasm accessions from different geographical origins as revealed by microsatellite markers. Plant Molecular Biology Reporter 30, 654-665. DOI:10.1007/s11105-011-0374-6 DOI: https://doi.org/10.1007/s11105-011-0374-6

Khamassi, K., Khoufi, S., Chaabane, R., Da Silva, J. T., and NACEUR, M. (2011). Optimization of conditions for assessment of genetic diversity in chickpea (Cicer arietinum L.) using SSR markers. International Journal of Plant Breeding 5, 141-145.

Mazhar, T., Ali, Q., and Malik, M. (2020). Effects of salt and drought stress on growth traits of Zea mays seedlings. Life Science Journal 17, 48-54.

Mekibeb, H., Demissie, A., and Tullu, A. (1991). Pulse crops of Ethiopia. Plant genetic resources of Ethiopia. Cambridge University Press, UK, 328-343. DOI: https://doi.org/10.1017/CBO9780511551543.028

Merga, B., and Haji, J. (2019). Economic importance of chickpea: Production, value, and world trade. Cogent Food & Agriculture 5, 1615718. DOI: https://doi.org/10.1080/23311932.2019.1615718

Moreno, M.-T., and Cubero, J. (1978). Variation in Cicer arietinum L. Euphytica 27, 465-485. https://doi.org/10.1007/BF00043173 DOI: https://doi.org/10.1007/BF00043173

Naseem, S., Ali, Q., and Malik, A. (2020). Evaluation of maize seedling traits under salt stress. Biological and Clinical Sciences Research Journal 2020. https://doi.org/10.54112/bcsrj.v2020i1.25 DOI: https://doi.org/10.54112/bcsrj.v2020i1.25

Sarwar, M., Anjum, S., Alam, M. W., Ali, Q., Ayyub, C., Haider, M. S., Ashraf, M. I., and Mahboob, W. (2022). Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants. Scientific Reports 12, 1-8. https://doi.org/10.1038/s41598-022-06516-w DOI: https://doi.org/10.1038/s41598-022-06516-w

Sarwar, M., Anjum, S., Ali, Q., Alam, M. W., Haider, M. S., and Mehboob, W. (2021). Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Scientific reports 11, 1-10. https://doi.org/10.1038/s41598-021-04174-y DOI: https://doi.org/10.1038/s41598-021-04174-y

Singh, V., Chauhan, Y., Dalal, R., and Schmidt, S. (2021). Chickpea. In "The Beans and the Peas", pp. 173-215. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-821450-3.00003-2

Toker, C., and Ilhan Cagirgan, M. (2004). The use of phenotypic correlations and factor analysis in determining characters for grain yield selection in chickpea (Cicer arietinum L.). Hereditas 140, 226-228. https://doi.org/10.1111/j.1601-5223.2004.01781.x DOI: https://doi.org/10.1111/j.1601-5223.2004.01781.x

Downloads

Published

2024-01-04

How to Cite

RASHEED, M., MALIK, A., & ALI, M. (2024). GENETIC VARIATION AND HERITABILITY ESTIMATES IN CHICKPEA SEEDLING TRAITS: IMPLICATIONS FOR BREEDING PROGRAMS. Bulletin of Biological and Allied Sciences Research, 2024(1), 59. https://doi.org/10.54112/bbasr.v2024i1.59