Weak and renormalized solutions for anisotropic Neumann problems with degenerate coercivity

Abstract

In this work, we study the following quasilinear Neumann boundary-value problem
$$\left\{\begin{array}{ll}
\displaystyle -\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\nabla u))+|u|^{p_{0}-2} u= f(x,u,\nabla u) & \mbox{in } \ \quad \Omega,\\
\displaystyle \sum^{N}_{i=1} a_{i}(x,u,\nabla u)\cdot n_{i} = g(x) & \mbox{on } \ \quad \partial\Omega,
\end{array}\right.$$
where $\Omega$ is a bounded open domain in $\>I\!\!R^{N}$, $(N\geq 2)$. We prove the existence of a weak solution for $f \in L^{\infty}(\Omega)$ and $g\in L^{\infty}(\partial\Omega)$ and the existence of renormalized solutions for $L^{1}$-data $f$ and $g$. The functional setting involves anisotropic Sobolev spaces with constants exponents.

Downloads

Download data is not yet available.

References

Y. Akdim, M. Belayachi, H. Hjiaj and M. Mekkour, Entropy solutions for some nonlinear and noncoercive unilateral elliptic problems, Rend. Circ. Mat. Palermo, II. Ser 69 (2020), 1373–1392. DOI: https://doi.org/10.1007/s12215-019-00477-2

A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Annal. di. Mat. Pu. ed. Appli. , 182(1), 53–79, 2003 DOI: https://doi.org/10.1007/s10231-002-0056-y

F. Andereu, J. M. Mazon, S. Segura De leon and J. Teledo, Quasi-linear elliptic and parabolic equations in L1 with non-linear boundary conditions, Adv. Math. Sci. Appl. 7 (1997), pp. 183-213.

S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Diff. Int. Equa. Vol 21, no. 5–6 (2008), 401–419. DOI: https://doi.org/10.57262/die/1356038624

M. B. Benboubker, H. Hjiaj and S. Ouaro, Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent, J. Appl. Anal. Comput. 4 (2014), no. 3, 245–270.

M. Bendahmane, M. Chrif and S. El Manouni, An Approximation Result in Generalized Anisotropic Sobolev Spaces and Application. Z. Anal. Anwend. 30 (2011), no. 3, 341–353. DOI: https://doi.org/10.4171/ZAA/1438

P. Benilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre and J. L . V´azquez, An L1- theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4, (1995), 241-273

L. Boccardo, A. Dall’Aglio and L. Orsina, Existence and regularity results for some nonlinear equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), suppl., 51–81.

R. Di-Nardo and F. Feo, Existence and uniqueness for nonlinear anisotropic elliptic equations [J]. Archiv der Mathematik, 2014, 102(2), 141-153. DOI: https://doi.org/10.1007/s00013-014-0611-y

R. Di-Nardo, F. Feo and O. Guibe, Uniqueness result for nonlinear anisotropic elliptic equations. Adv. Diff. Equa. 18 (2013), no. 5-6, 433-458. DOI: https://doi.org/10.57262/ade/1363266253

X. Fan, Anisotropic variable exponent Sobolev spaces and p(x)-Laplacian equations, Complex Var. Elliptic Equ., (2011) 56, No. 7-9, 623-642. DOI: https://doi.org/10.1080/17476931003728412

O. Guibe and A. Mercaldo, Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data, Trans. of. the. Am. Math. Soc., 360(2), pp 643–669, 2008. DOI: https://doi.org/10.1090/S0002-9947-07-04139-6

E. Hewitt and K. Stromberg, Real and abstract analysis. Springer-verlng, Berlin Heidelberg New York, 1965. DOI: https://doi.org/10.1007/978-3-642-88044-5

S. Huang and T. Su, X. Du and X. Zhang, Entropy solutions to noncoercive nonlinear elliptic equations with measure data, 2019(97), pp 1–22.

J. L. Lions, Quelques methodes de resolution des problemes aux limites non lin´eaires. Dunod et Gauthiers-Villars, Paris 1969.

M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl., 340 (2008), 687-698. DOI: https://doi.org/10.1016/j.jmaa.2007.09.015

Published
2022-12-29
Section
Articles