Applications of New Iterative Method to fractional non linear coupled ITO system

  • Rashid Nawaz Abdul Wali Khan University
  • Samreen Farid Abdul Wali Khan University
  • Samia Bushnaq Princess Sumayia University of Science and Technology

Abstract

In this article New Iterative Method (NIM) is tested upon time fractional coupled ITO system. The results obtained by the proposed method are compared with that of Homotopy Perturbation Method (HPM). It is shown that the proposed method is accurate for strongly nonlinear fractional coupled system of PDEs.

Downloads

Download data is not yet available.

References

S. Kumar, A New Efficient Algorithm to Solve Non-Linear Fractional Ito Coupled System and Its Approximate Solution, Walailak, J, Sci and Tech., 11(12), 1057-1067, (2014).

G. Adomian, Nonlinear Stochastic Differential Equations, J. Math. Anal. Appl., 55, 441-452, (1976). https://doi.org/10.1016/0022-247X(76)90174-8

G. Adomian, Review of the Decomposition Method and some Recent Results for Nonlinear Equations, Comput. Math. Appl.,21, 101-127, (1991). https://doi.org/10.1016/0898-1221(91)90220-X

J. H. He, Approximate Solution of Nonlinear Differential Equations with Convolution Product Nonlinearities, Comput. Meth. Appl. Mech. Eng., 167(6), 69-73, (1998). https://doi.org/10.1016/S0045-7825(98)00109-1

J. H. He, Variational Iteration Method a Kind of Non-Linear Analytical Technique: Some Examples, Int. Nonl. Mech., 34, 699-708, (1999). https://doi.org/10.1016/S0020-7462(98)00048-1

J. H. He, Homotopy Perturbation Technique, Comp. Meth. Appl. Mech. Eng., 178, 257-262, (1999). https://doi.org/10.1016/S0045-7825(99)00018-3

J. H. He, Application of Homotopy Perturbation Method to Nonlinear Wave Equations, Chao. Solit. Fract, 26, 695-700, (2005). https://doi.org/10.1016/j.chaos.2005.03.006

M. M. Rashidi, D. D. Ganji and S. Dinarvand, Explicit Analytical Solutions of the Generalized Burger and Burger Fisher Equations by Homotopy Perturbation Method, Num. Meth. Part. Diff. Eq., 25, 409-417, (2009). https://doi.org/10.1002/num.20350

M. M. Rashidi, N. Freidoonimehr, A. Hosseini, B. O. Anwar and T. K. Hung, Homotopy Simulation of Nano fluid Dynamics from a Nonlinearly Stretching Isothermal Permeable Sheet with Transpiration, Mecc., 49, 469-482, (2014). https://doi.org/10.1007/s11012-013-9805-9

S. J. Liao, On the Homotopy Analysis Method for Nonlinear Problems, Appl. Math. Comput., 147(4), 499-513, (2004). https://doi.org/10.1016/S0096-3003(02)00790-7

S. Abbasbandy, Solitary Wave Solutions to the Modified Form of Camassa Holm Equation by Means of the Homotopy Analysis Method, Chao. Solit. Fract., 39, 428-435, (2009). https://doi.org/10.1016/j.chaos.2007.04.007

V. Marinca, N. Herisanu, An Optimal Homotopy Asymptotic Method for Solving Nonlinear equations arising in Heat Transfer, Int. Com. Heat Mass tran., 710-715, (2008). https://doi.org/10.1016/j.icheatmasstransfer.2008.02.010

V. Marinca, N. Herisanu, and I. Nemes, Optimal Homotopy Asymptotic Method with Application to Thin Film Flow, Cent. Eur. J. Phys., 6, 648-653, (2008). https://doi.org/10.2478/s11534-008-0061-x

V. Marinca, N. Herisanu, and Gh. Madescu, An Analytical Approach to non-Linear Dynamical Model of a Permanent Magnet Synchronous Generator, Wind Energy, 18(9), 1657-1670, (2015). https://doi.org/10.1002/we.1785

K. Shah, H. Khalil, R. Ali Khan, A Generalized Scheme Based on Shifted Jacobi Polynomials for Numerical Simulation of Coupled Systems of Multi-Term Fractional-Order Partial Differential Equations, Cambridge University Press, 20, 11-29, (2017). https://doi.org/10.1112/S146115701700002X

K. Shah, J. R. Wang, A Numerical Scheme Based on Non-Discretization of Data for Boundary Value Problems of Fractional Order Differential Equations, Revista de la Real Academia de Ciencias Exaxtas. 113(3), 2277-2294, (2019). https://doi.org/10.1007/s13398-018-0616-7

Y. Li, K. Shah, R. Ali Khan, Iterative Technique for Coupled Integral Boundary Value Problem of Non-Integer Order Differential Equations, Advances in Difference Equations, 2017(1), DOI: 10.1186/s13662-017-1308-x, (2017). https://doi.org/10.1186/s13662-017-1308-x

S. Ali, K. Shah, Y. Li, M. Arif, Optimum Solutions of Space Fractional Order Diffusion Equation, Thermal Sciences, DOI: 10.2298/TSCI171120036A, (2018). https://doi.org/10.2298/TSCI171120036A

I. Masaaki, An Extension of Non Linear Evolution Equations K-dv and (mk-dv) Type to Higher Orders, Journal of Physical Society of Japan, 49(2), 771-778, (1980). https://doi.org/10.1143/JPSJ.49.771

L. Diosi, T. Konrad, A. Scherer, Audretsch, Coupled ITO Equations of Continuous Quantum State Measurement and Estimation, arXiv:quant-ph/10608097v2, (2006).

Ann J. Al-Sawoor, M. O. Al-Amr, Reduced Differential Transform Method for the Generalized Ito System, Int. J. Enh. Resea. Sci. Tech. Eng., 2, 135-145, (2013).

H. M. Jaradat, I. J. Marwan Alquran, M. M. M. J. Zead Mustafa and K. M. A. Raed Abdelkarim, Approximate Solutions to the Generalized Time-Fractional ITO System, Ital. J. Pur. Appl. Math., 37, 699-710, (2017).

E. C. Aslan, M. Inc, Numerical Solutions and Comparisons for Nonlinear Time fractional Ito Coupled System, J. Comput. Theor. Nano Science, 13, 5426-5431, (2016). https://doi.org/10.1166/jctn.2016.5433

K. B. Oldham, J. Spanier, Fractional Calculus, Academic Press, New York, (1974).

I. Podlubny, Fractional Differential Equations, Academic Press New York, (1999).

V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl, 316, 753-763, (2006). https://doi.org/10.1016/j.jmaa.2005.05.009

V. Daftardar-Gejji, S. Bhalekar, Solving Boundary Value Problems with Dirichlet Boundary Conditions using a New Iterative Method, Comput. Math. Appl., 59, 1801-1809, (2010). https://doi.org/10.1016/j.camwa.2009.08.018

Bhalekar, S. and Daftardar-Gejji, V., Convergence of New iterative method, International Journal of Differential Equations, Article ID 989065, 10 pages, (2011). https://doi.org/10.1155/2011/989065

Noor, M. A. and Noor, K. I., Some iterative schemes for nonlinear equations, Applied Mathematics and Computation, 183, 774-779, (2006). https://doi.org/10.1016/j.amc.2006.05.084

Published
2022-01-31
Section
Articles